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Part I

Theoretical background on statistics and its
relation to empirical research
There has been much criticism in the way linguists gather their data (e. g., Bard, Robert-
son & Sorace 1996; Featherston 2007; Gibson & Fedorenko 2010a, 2010b). Given that
you are reading this tutorial I assume you know that, at least in some cases, it is not
very scientific to rely solely on your own intuitions. It is preferable to collect data in a
structured way by carrying out acceptability judgments (see below for terminology and
the distinction between acceptability and grammaticality). There are several different
ways of collecting such judgments. The most commonly used are magnitude estimation,
yes-no choice tasks, forced-choice tasks, and Likert item tasks (if you don’t know any of
these terms, don’t worry). For reasons I will not discuss in detail, I will only concentrate
on Likert item tasks in this tutorial, meaning that participants have to rate sentences
from unnatural to natural. This is done simply because Likert items are easy to under-
stand for participants, the math that you need for your statistics is fairly easy, and the
results are pretty informative (for empirical reasons as to why to use Likert scales and
not to rely on other, more complicated, methods in linguistic judgment tasks see Weskott
& Fanselow 2011 and Sprouse 2011a).

1. The empirical method—a short introduction
The word empirical is derived from Greek ‘empeiría’ meaning ‘experience’. This means
that empirical research collects (and analyzes) data. In this rather vague sense, nearly
all academic disciplines are empirical.1 And indeed, linguistics is always an empirical
science since it deals with language data.

There is, however, a difference between linguists who rely on their own intuitions and
linguists who collect intuitions in a structured way that follows a strict method to test
a previously defined hypothesis. The latter kind of linguistics is what this tutorial is
about. The branch of linguistics that does not rely on data collected from participants,
but relies on intuitions is sometimes derogatorily called ‘armchair linguistics’. Armchair
linguistics is not in itself bad as many judgments are rather clear. However, as soon as
there is disagreement on data that is hard to judge, linguists should rely on empirical

1There are, of course, disciplines that are not empirical at all. Prime examples are logic and math-
ematics. That mathematics is not empirical in the sense we use here is illustrated by Egmont Colerus
(2013:25) [1942] in a nice way: “[M]athematics is not in itself an experimental subject like science, which
is based on experience. It is purely intellectual, spun out of the brain without any need for experiment.
Its results can neither be proved or disproved by experience; proof can only be obtained by ensuring the
accuracy of its logical operations.”
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data collected from many native speakers. Another reason to collect judgments would
be a case in which you simply have no access to intuitions because you are not a native
speaker of the language under investigation.

Strict methods like the one I will present here follow a philosophy, namely positivism,
that I cannot outline here. The short version is: positivism is a version of empiricism:

Empiricism is the philosophical tradition which believes that (a) the world
consists of objects (b) these objects have their own characteristics and prop-
erties which exist irrespective of what we think they are like, and (c) our
knowledge of objects is developed through experience with them. (Bucking-
ham & Saunders 2008:12)

I think what the previous quote says about empiricism is quite uncontroversial: Scientists
believe that there are objects in the world that don’t change just because we don’t look
at them. They exist independently of us. We can only gather knowledge about them
by collecting and analyzing data. And we can only collect data if we can observe and
experience, i. e., measure something. In our case, the object we want to know something
about is grammar (think about whether you believe that the grammar of your language
exists as an object that has “characteristics and properties which exist irrespective of
what” you think they are like).

Positivists are a little bit stricter than empiricists. They especially emphasize the
point that you can only know something from observing something (positive data =
data you gain through experience). Positivism has it’s roots in the 19th century (mainly
with Auguste Compte) and was criticized by Austrian/British philosopher Karl Popper
(1959): Popper introduced the idea that a scientist in general cannot prove something via
observation, but can only disprove something. So for him the empirical scientific method
starts out with a theoretical generalization and tries to prove it wrong by testing it.2 The
very short version of this huge debate is that we start out with a hypothesis about how
the world works and try to prove this hypothesis wrong via empirical investigation.

Empirical research is often divided into experimental and non-experimental research.
Doing acceptability judgments has many features of experimental research, but typi-
cally, we would not call a acceptability rating study an experiment, but rather a quasi-
experiment (or simply an empirical study). A real experiment is a repeatable empirical
study under controlled conditions. In an experiment you test an hypothesis via ma-
nipulating one or more variables (for example, one group gets a drug, the other group
gets a placebo). The crucial point in an experiment, however, is that there are two or
more groups and that the individuals are assigned randomly to these groups. Random
assignment plays a crucial role in the definition of experiments (see already Fisher 1925,

2To be 100 percent correct, Popper’s view is actually called ‘critical rationalism’ rather than ‘posi-
tivism’
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1935) and constitutes one case of randomization—a key concept in empirical research:
“The term random refers to the equiprobability of events. Random assignment refers
to any procedure that assigns subjects to the comparison group on the basis of chance”
(Christensen 2012:473). As acceptability judgment tasks in their basic form lack random
assignment we do not speak of an experiment, but rather of a quasi-experiment or simply
call it an empirical study. However, we will see that we can use Latin squares to create
several lists of stimuli which allows us to assign participants to these lists (see Section
11). This will make our judgment tasks more similar to an experiment.

Excursus: Random Assignment, Random Sampling, and Populations
Note that randomly choosing participants from a population is not random as-
signment. This is called ‘random sampling’. Also note that random assignment
always involves the random assignment to groups in order to manipulate a vari-
able. This means that if you compare the speakers of two different dialects, you
still don’t have an experiment, since speaking a dialect is not a variable you can
manipulate (similar to, for example, gender or age).

Empirical research also involves random sampling. Take an election poll for
example. As I’m from Germany, I will illustrate this with the German election
system. There are approximately 65 million people eligible to vote in Germany.
That’s a lot of people to make a poll! It is, however, enough, to ask 2.000 people,
to get an incredibly reliable election prediction (provided that the participants
are honest). That 2.000 people is enough for a prediction lies in the fact that
they are chosen randomly—in fact, in many cases, we would need much less
participants. This leads to a situation in which all voter groups are represented.
We call the set of all individuals that are of interest our ‘(statistical) population’
and the subset that we look at our ‘(random) sample’. In this case, the popula-
tion consist of a finite set of real individuals. A population can also consist of
judgments and can be infinite. I will say more about populations and samples
later.

2. Acceptability or grammaticality judgments? A note on terminology
“Speakers’ reactions to sentences have traditionally been referred to as gram-
maticality judgments, but this term is misleading. Since a grammar is a mental
construct not accessible to conscious awareness, speakers cannot have any im-
pression about the status of a sentence with respect to that grammar; rather
[…] one should say their reactions concern acceptability, that is, the extend to
which the sentence sound “good” or “bad” to them.”

– Schütze & Sprouse (2013:27–28)
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Linguists often ask themselves whether a particular sentence is grammatical or not. A
property of a sentence is that it is a real, observable entity (at least when it is pronounced
or written). Although we usually say that we are interested in the grammaticality of a
sentence that is not what we are really concerned about. As linguists, we want to know,
if a particular grammatical construction, and not a particular sentence, is acceptable or
not. To be more precise, the question is whether a particular construction is part of the
grammar of a language or not.

As grammar is abstract and not directly observable, we have to stick with individ-
ual (concrete) sentences. Things that are not directly observable can nevertheless be
measured. Think of intelligence. Intelligence is measured in IQ tests, although it is not
a ‘real thing’ that we can see, touch, or measure as we can measure, for example, the
height of a person. What you can measure, though, is how an individual is capable of
solving a particular exercise. The outcome, i. e., the score, of such an exercise is called an
‘observable variable’ or a ‘manifest variable’. Notice that the term ‘variable’ here simply
means that something is measured or counted. It is simply a number. The opposite of a
manifest variable is something that cannot directly be observed, like intelligence or gram-
maticality. We call such abstract concepts ‘latent variables’ or ‘constructs’. To sum up,
what we want to measure is an individual’s intelligence (the construct), but we cannot
measure it directly. What we can measure directly is the performance of an individual
in a particular exercise (a variable). However from the performance of one exercise, we
cannot conclude how intelligent an individual is. The individual’s performance on one
task can be influenced by many things. Namely, the person could have been distracted
by something, it could be that the exercise contains a word the individual does not un-
derstand without which s/he would have been able to solve the problem, and many more
things.

For linguistics, this means that there is a big difference between a particular sentence
and the rules that were used to form or understand this sentence (or that are applied in
judging this sentence). What we, as linguists, are interested in is the abstract concept
of grammaticality. Thus, grammaticality is a latent variable or a construct that we
cannot measure directly. What we can measure is how much individuals like a particular
sentence (or a set of particular sentences). The manifest variable (‘How much do you
like the sentence from 1 meaning not at all to 7 the sentence is fine’) we can measure is
called the acceptability of a sentence (or phrase or word or dialogue). Acceptability is
about how much an individual accepts a sentence as being formed according to his or her
internal grammar:

• Grammaticality: Not directly observable; an abstract rule that is part of the internal
grammar of an individual or of a group of individuals; transferable into a construct
(or: latent variable)
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• Acceptability: Directly observable through ratings; measurable through concrete
entities, namely sentences; a manifest variable (or: observable variable)

Note that I sometimes use the term ‘grammaticality judgments’ while others prefer the
term ‘acceptability judgments’ (or ‘acceptability/grammaticality rating’). You will see in
the course of this tutorial that both terms are correct in their own way: We use individual
acceptability judgments to obtain a grammaticality judgment.

In linguistic terms, following Chomsky (1965), this corresponds to the distinction
between performance and competence. As Schütze (2016:20) notes: “Whether a sentence
is acceptable is a question about performance.” And: “Whether a sentence is grammatical
is a question about competence”. This means that we use the actual behavior of speakers
(performance) of a language to get a clue about their grammar (competence). Again:
asking a participant whether a sentence is acceptable is something we can measure (a
variabe) and the underlying grammatical construction or rule is not, although we are
interested in it (it is a construct). Actually, we do not even know if the rule we are after
in fact is a rule that exists in native speakers’ brains. We don’t know this because we
cannot look it up. That’s why it is called a construct as we constructed something we
believe exists (or does not exist).

Asking someone for an acceptability judgment raises at least two problems: The first
problem is that the internal grammar of the particular person you’re asking could diverge
from the grammar of others (you may know this phenomenon from classes or conferences
where some people like a sentence and others don’t). This is why you have to ask several
informants and not only one (I will come to the question of how many participants you
need below).

Excursus: More on variation
That variation between speakers exists cannot be stressed enough because any
linguistic theory should be able to model this variation: “It has come to be gen-
erally acknowledged that not all speakers of ‘the same language’ might have the
same competence, but that does not justify basing the theory only on sentences
for which there is universal agreement, and extrapolating by some means to dic-
tate the status of the remainder. In cases where people disagree, that fact cannot
be ignored; the theory must be able to describe every speaker’s competence, and
thus must allow for variation wherever it occurs” (Schütze 2016:37).

And that variation between speakers will occur in your study is nearly guar-
anteed! Disagreement between informants is reported since the very beginning
of the application of judgment tasks for linguistic purposes (e. g., Hill 1961;
Heringer 1970; Labov 1971; for a more comprehensive overview see Cowart
1997:4–5).
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The second problem is that an individual might not like a sentence because of an unfore-
seeable number of reasons. For example: They may be tired or in a bad mood (another
reason for asking a large amount of people!) or they may not like its semantics, because
the sentence is about dogs and the person is a cat person. Especially, when you are not
asking linguists, but laymen, people often don’t really understand what you want them
to judge and rely on the semantic content or the wording. The solution for this problem
is that you do not test one construction using one sentence, but use several sentences
that were built from the same rule. This procedure is well-known from psychometrics
and classical test theory (e. g., McIver & Carmines 1983), Nunnally & Bernstein (1994),
or Oppenheim 1992) so this is what we will take a look at next.

3. Test theory: Creating a construct
“One item a scale doth not make.”

– Carifio & Perla (2007:110)

What I have said so far means: What you want is to measure something that is not directly
observable. What you can do, however, is to measure how much people like individual
sentences. So you measure acceptability by creating sentences. These sentences are rated
by several participants. What you create is a measure of the unobservable (an assumed
abstract grammatical rule).

I will now rephrase what I just said very briefly using different terminology: Let’s
call each sentence you create an item. Assume a very simple case: You want to know
something about the linear order of two parts of speech X and Z. There are two possible
orders, namely XZ and ZX and your theory predicts XZ, but *ZX. You decide to do a
simple judgment task. It is not a good idea to test only two sentences, since the wording
of those two sentences could influence your participant’s judgments. Additionally, you
don’t want to test how item a and item b (so, two sentences) are rated, but you want to
know how much people, in general, like the construction XZ and ZX: Does their internal
grammar allow for both (abstract) rules or only for one?

Now, let’s just concentrate on the order XZ. As a friend told you 5 would be a good
number, you create 5 items containing the order XZ (and likewise 5 items which only differ
from the first 5 items in that they contain the order ZX). The assumption you make is
depicted in Figure 1. The figure shows that the construct should determine the judgments
of any of the individuals, because it is a representation of the abstract rule XZ you are
looking for. Of course, there will be other influences on your items! They will never be
judged exactly the same if you ask ten or more people! But: If you constructed your items
carefully, it is very likely, that the sentences will be rated very similar. This similarity
should show up in form of a correlation. A correlation is a systematic relationship between
numbers. The numbers in this case are your ratings. That the ratings correlate means
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that all your items measure the same thing. This correlation between all your items is
depicted in the lower part of the graphic.

Figure 1: One construct, five items that all correlate

Excursus: Measuring the Correlation
To find out if your items (your sentences) really measure the same thing (i. e.
form a scale), you calculate a coefficient called Cronbach’s alpha (also called
‘tau-equivalent reliability’) first described in Cronbach (1951). The formula to
do this is:

α =
k

k−1
(1−

∑s2
i

s2
T
) (1)

Where: k = number of items, s2
i = variance of the ith item, and s2

T = the variance
of the sum of all items. As the computer will take care of the math, I will not go
into more details here. What you have to know to calculate Cronbach’s alpha
will become clear by using a very simple example. Assume you have 5 sentences
with the same grammatical construction underlying them. Those are your items
I1, I2, I3, I4, and I5. As they should all measure the same thing and thus create
a scale, their ratings should correlate. You ask 5 people to rate the sentences
from 1 to 7 (1 = unnatural, 7 = natural). Let’s call the participants P1, P2, P3,
P4, and P5.
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I1 I2 I3 I4 I5
P1 3 2 2 3 2
P2 2 2 2 2 3
P3 2 3 3 2 3
P4 2 2 2 3 3
P5 3 3 2 3 3

You can calculate Cronbach’s alpha with nearly every common statistics soft-
ware. You can, for example, use the psych package in R. There are also some very
simple to use online resources, for example, https://www.wessa.net/
rwasp_cronbach.wasp. On this page, you simply type in the numbers
from the table above. The result is an Cronbach’s alpha of 0.7576. The high-
est number you are able to get is a 1 (if you get a negative value, something
is wrong). The rule of thumb is that your Cronbach’s alpha should be greater
than 0.65, so we are doing fine with our value.

Note that the concept of Cronbach’s alpha is a little more complex than I
presented it here. If you want to find our more I recommend Tavakol & Dennick
(2011) as a starter.

The psychological reality of your construct, of course, is not self-evident. Even if 1,000
participants rate all of your 5 items with a 7 (meaning: totally natural), it still could be
that there is some hidden factor that you are not aware of. And there is another thing
you should be aware of: We now only looked at the order XZ that we predicted to be
correct, but in practice you also want to look at the order that should not be well-formed.
As we constructed 5 items containing XZ, we also construct 5 items containing ZX, the
order that should be ill-formed according to the theory we’re working with (i.e., *XZ is
the hypothesis). But what does this mean? The answer is: We don’t really know! It
could mean that there is some abstract rule in the heads of the people that does not
allow this order. Or it could mean that there is no rule for this at all! But what have you
measured then? What is your construct? In real life, we often simply don’t care much
about this.

To get an accurate measure of a construct it is useful to understand the basics of
classical test theory. As the name suggests, test theory is the theory of how a test works.
I will introduce the classical test theory via a simple example: high jump. Let’s assume
that you are interested in how high your best friend is able to jump. The height your
friend is able to jump is a construct. ‘Wait? What? But I can measure how high
somebody can jump!’. Of course, you can measure the height of a jump. But the height
someone is able to jump varies from jump to jump. The ‘real’ height is not observable.

https://www.wessa.net/rwasp_cronbach.wasp
https://www.wessa.net/rwasp_cronbach.wasp
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What you can observe are only instances of jumps.3 What you’re interested in is the
capability of your friend to jump as high as possible (latent variable/construct), not how
high she can jump right now (observable variable).

To measure how high a person is able to jump we use a simple method known from
high jump competitions: Your friend will repeatedly jump over a horizontally placed bar.
For each height your friend has, let’s say, five tries. If your friend is able to jump over
the bar at a certain height without dislodging it, the bar is raised to the next level. How
high a person can jump depends on several factors: On the mood of that person, on her
own height, if the person feels sick, and also on factors that lie outside of that individual,
e. g., if she is carrying a backpack if it is super hot, super cold, or even raining. But even
without such extreme conditions there will be variation between each jump.

This variation, however, follows a pattern. There will be a few very bad attempts.
There will also be a few extraordinary good jumps. But there will be many jumps around
one height. Some of them may be a little higher, some a little lower. They will vary around
your friend’s real capability. You may remember the term ‘Gaussian distribution’, also
called ‘normal distribution’ from school days (or your statistics class). That means that
a bell-shaped curve will emerge, see Figure 2. Put simply, a normal distribution is a
symmetrical curve that is shaped like a bell. There will be a few very low and a few
very high jumps. This is represented by the left and right. Here, the curve is very low,
meaning that only a few instances of really low and really high jumps were measured.
There is also one value that occurs very often. This is the value in the middle (the dotted
line). Such a curve, of course, will only emerge if you do a lot of jumps, ideally, infinitely
many. The true value is simply calculated as the mean of all measurements. However,
the true value only emerges if you have an indefinitely large set of measures—a rather
unrealistic scenario, of course.

So, to get such a curve, we really need a lot of data. The best thing would be, that we
measure your friend not only once on one day, but measure on several days. Perhaps, we
do not only want to know how high your friend is able to jump, but how high a person in
general is able to jump so we should measure a lot of different people on many different
occasions to get the ‘real’ value of the capability.

3Sometimes a latent variable of this kind, i. e., a latent variable that can be measured directly is called
a ‘hidden variable’.



12 Acceptability Ratings and Grammaticality Judgments

Figure 2: A normal distribution

Excursus: Regression to the Mean
You will find normal distributions everywhere in nature. They come into play
when some characteristic is determined by various factors. Think of the length
of an average (adult) elephant. The length of an elephant depends on a number
of factors. Those factors are, for example, genetics, nutrition, or whether or
not the elephant was raised in the wild or in a circus (hopefully not!). If you
measure, let’s say, a million elephants you will make the following observation:
There will be a few very short elephants and a few very long ones. And there
will be a lot of elephants that have one particular size (we do measure a little
coarse and do not take centimeters into account, or course, every elephant will
be of a different size if our measure is infinitivally fine-grained). If you sum up
all the lengths of the elephants and divide it by a million (i. e., the number of
elephants you measured), the average length will be the one that occurs most
often.

This phenomenon is called ‘regression to the mean’ and was discovered by the
English scientist Sir Francis Galton (you may also know him as the ‘discoverer’ of
the fingerprint). Galton measured the heights of people from the same families.
What he found was that there was something like a mean height for people in
general. Of course, he found some very tall men and some very short ones. But
the sons of the very tall men were, on average, a little shorter than their fathers.
And the sons of the very short ones were, on average, a little taller. So in the
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end, there are extremes, but nature tends to keep them small and around a
mean.

At this point, I want to make two recommendations. The first one is a
reading and the second one is a watching recommendation. Let’s start with
my reading tip. If you are a little interested in statistics, I recommend reading
Salsburg (2001). About the Galton’s discovery of the regression to the mean he
writes (p. 13):

Suppose[…] that regression to the mean did not occur. Then, on the
average, the sons of tall fathers would be as tall as their fathers.
In this case, some of the sons would have to be taller than their
fathers (in order to average out the ones who are shorter). The sons
of this generation of taller men would then average their heights, so
some sons would be even taller. It would go on, generation after
generation. Similarly, there would be some sons shorter than their
fathers, and some grandsons even shorter, and so on. After not too
many generations, the human race would consist of even taller people
at one end and ever shortes ones on the other.

Salsburg’s book is not an introduction to statistics, but a very well written
history of statistics. It’s really fun to read!

The other recommendation is that you google the term ‘Galton board’. You
will find some very interesting videos showing how nature creates normal dis-
tributions. This will help you understand the concept better (I will have to say
more about normal distributions later).

So far, so good. Now, classical test theory comes into play: this theory takes into account
that there is variation in your measurement. We call this variation the ‘measurement
error’, the ‘error variation’ or simply the ‘error’, abbreviated with the Greek letter ε
(epsilon). Let’s say, your friend jumps 70 centimeters high on one occasion. We abbreviate
this observed score X . Mathematically speaking, this score X is the result of two values:
there is the true height your friend is able to jump and there is variation. Thus, we can
write the following formula:

X = T + ε (2)

The formula says, that each score that you will measure is decomposable into a true value
T (your friend’s capability) and an error ε (this error variation can also be negative).4

4The true score, i. e., the latent variable, is often represented by the Greek letter eta (η). I’ll stick
with T here.



14 Acceptability Ratings and Grammaticality Judgments

You may think that we have the problem that we can only observe X (how high did your
friend jump/how does an individual rate a sentence), but not T (the ‘real’ height your
friend is able to jump/how grammatical is a construction) and ε . However, this is not
entirely true. Let’s look at the definition of T :

T = M(x) (3)

The true value T is defined as the mean of an infinite number of observed scores. Of
course, you cannot calculate the mean of an infinite number of scores. What you can
calculate, however, is the mean of as many observed values as possible. Indeed, there
is not even the need for as many observations/measurements as possible, a reasonable
number is enough (we’ll talk about this in a second).

The formulas we have seen so far are axioms (i. e., they serve as a premise, in this
case for classical test theory). We can deduce some more formulas from these axioms.
From Formula 2, we can get:

ε = X −T (4)

What 4 tells us is that the error is the observed value minus the true value. We can also
say that, if we make an infinite number of measurements, the sum of all the errors will
be zero:

∞

∑
i=1

ε = 0 (5)

And it doesn’t matter if we talk about measurements from one person or a whole pop-
ulation. Please make sure you understand this! Also look at Figure 2 again. There will
be values greater than the mean and values lower than the mean (i. e., some are positive
and some are negative). With an infinite number of measurements, the sum of these
error will equal zero. Again, we do not have an indefinite set of measurements, but only
a limited number. But after collecting a certain number of measurements this does not
matter anymore because at a certain point the error will become so low that we simply
can ignore it.

When we talk about an error considering the formula in 5, this means that we do not
talk about a systematic error, but an unsystematic one. A systematic error (also called
‘bias’) would be, for example, if you would measure your jumping friend only on Mondays
after a hard weekend (she would be systematically worse). An unsystematic error arises
from a lot of different sources. Sometimes your friend is in a very good mood when she
jumps, sometimes she isn’t, sometimes it’s raining and sometimes the sun shines, etc.
Sometimes she jumps a little higher and sometimes not.
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4. The foundations of acceptability judgments: Measurement theory
“Measurement is never better than the empirical operations by which it is car-
ried out, and operations range from bad to good. Any particluar scale, sensory
or physical, may be objected to on the grounds of bias, low precision, restricted
generality, and other factors, but the objector should remember that these are
relative and practical matters and that no scale used by mortals is perfectly free
of their taint.”

– Stevens (1946:680)

As far as I have presented grammaticality judgments so far, I have said that participants
will rate your items from 1 to 7. This is not the only way to do grammaticality judgments.
You could also ask them to rate from 1 to 6. Or just rate if the sentences are acceptable
or not. Additionally, there are alternative ways to do acceptability judgments.

There are, however, good reasons to stick with a rating from 1 to 7. First, a rating
from 1 to 7 is more informative than just asking if a sentence is acceptable or not. You
could, of course also ask participants to rate from 1 to 6 or from 1 to 10. This has the
advantage that in such ratings, there is no middle and participants are forced to make
a decision in one direction (I think a range from 1 to 10 is too big and people could get
confused). See Figure 3. However, there are empirical reasons to stick with a rating from
1 to 7: Using this kind of scale simply has proven to be useful (e. g., Lewis 1993; Finstad
2010; see also Preston & Colman 2000). However, using a rating from 1 to 5 does not do
a lot of harm.

Figure 3: Some rating formats have a middle, i. e., an undecided category, others don’t.
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Rating formats like the one we use here are called ‘Likert response format’ or ‘Likert-type
scale’, named after the inventor of this format (Likert 1932). You surely know the Likert
response format. It consists of questions like ‘How many cigarettes do you smoke per
day?’ and several options to answer like: ‘1 = 0’, ‘2 = less than 5’, ‘3 = 5 or more’, ‘4 =

10 or more’, ‘5 = 20 or more’. Another example would be: ‘How do you rate the following
statement: Beer is important for linguists: 1 = totally agree 2 = agree 3 = neutral 4 =

do not agree 5 = do not agree at all’. Many people call such rating scales ‘Likert scales’,
but this is not entirely correct and it is useful to understand why: With grammaticality
judgments we construct several items for one construct that we want to know something
about. The term ‘Likert scale’ refers to the set of items that measures such a construct.
In our case this is the set of sentences that are created according to the same linguistic
rule. When we talk about how a single sentence is rated there is, of course, also a scale,
namely a scale from 1 to 7. We call a particular instance of a sentence to be judged on
such a scale a Likert item or a sentence that is judged in a Likert response format. What
we need to distinguish is the response format we use for one item (the Likert response
format, often from 1 to 7) and a given measurement scale. One item does not constitute
a scale. I’ll talk about this issue a little more when I come to the statistical analysis
of Likert-type data, but if you want to know more, a short and easy-to-read resource is
Carifio & Perla (2007). Their take-home message is “a single item is not a scale in the
sense or a measurement scale” (p. 110). This simply means that there is a difference
between the response format (e. g., from 1 to 7) and a scale measuring an underlying
construct consisting of interrelated items.

It is time now to think a little bit about math. Imagine there are two babies. Peter
is 1 year old and Tamara is 2 years old. It is very easy to see that Tamara is older than
Peter. Actually, we can be more precise as Tamara is twice as old as Peter. Now look
again at the Likert-type scale about tobacco consumption I just mentioned. Someone
who answered 2 clearly smokes more than someone who answered 1. But in this case, 2
is not twice as much as 1! What we learn from this is very simple, but very important.
There are different kinds of numbers. Actually, there are not different kinds of numbers,
but different kinds of data. Depending on the data different mathematical operations are
possible. You could, for example, add the ages of the babies up. It makes totally sense
to say that they are 3 years old together. But someone who answered 1 when asked how
many cigarettes he smokes and someone who answered the same question with a 2 do
not smoke 3 cigarettes a day. In fact, you don’t know how much they smoke exactly!

Before you start your study, you have to know what your data will look like. And
this is often really important: You have to know what kind of mathematical operations
are possible with the kind of data you will get before you even start (as the kind of data,
for example, determines how many participants you will need to consult). The reason for
this is, of course, that there are different mathematical operations possible with different



Acceptability Ratings and Grammaticality Judgments 17

kinds of data. What we need is a theory of measurement. There are actually several
theories of measurement and there is a huge philosophical debate about the nature of
data, about the world, and about mathematics. The theory of measurement we need
for our purposes, however, will be quite simple. Nevertheless, it is a good idea to keep
in mind that measurement itself presupposes a theory, namely that the thing you are
looking at is indeed measurable:

Measurement always presupposes theory: the claim that an attribute is quan-
titative is, itself, always a theory and that claim is generally embedded within
a much wider quantitative theory involving the hypothesis that specific quan-
titative relationships between attributes obtain. (Michell 1997:359)

The first question we want to ask when we hear a term like ‘theory of x’ is: What is x?
So, when talking about a theory of measurement we ask ourselves what measurement is.
The classical answer to this question comes from a paper that laid the groundwork for
every modern theory of measurement: “… measurement, in the broadest sense, is defined
as the assignment of numerals to objects or events according to rules” (Stevens 1946:677).
For this purpose, Stanley Smith Stevens developed a classification of different levels of
measurement (or: scales of measurement). For our purposes, we need to distinguish three
levels:

• Nominal level: Nominal type data is data to which you assign numbers without any
empirical relevance. This means that there is no real relation between the numbers
and the things you measure. You could say, for example, that all the Spanish
speakers in your study will be assigned the number 1 and all Russian speakers
the number 2. This does not mean that 2 is more than 1. They are just names
(actually, if you know a little Latin the word ‘nominal’ says that). Why should I
use the nominal level, you may ask. And that’s a good question! We don’t really
need the nominal level here, but it is often useful to have numbers assigned to your
data when applying statistical models to your data (e. g., in multiple regression).

• Ordinal level: An ordinal scale represents a rank. This is true for example for a high
school diploma, bachelor’s degree, a master’s degree, and a doctor’s degree. They
are ranked exactly in this order, so a master’s degree is considered higher than
a bachelor’s (since a bachelor’s degree is usually the prerequisite for a master’s
degree). You could imagine that you could assign numbers to the degrees and say
1 = high school, 2 = bachelor, 3 = master, 4 = doctorate. As you can imagine,
there is only a limited number of mathematical operations you could apply to
ordinal data. And you surely have recognized: The way the Likert-type scale asked
about tabacco consumption leads to the fact that the data was coded as ordinal
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type data. The crucial thing with this kind of data is that the data is ranked, but
that the intervals between the steps are either unequal, unclear, or not defined.

• Interval level: Interval type data in fact is very similar to ordinal data, but there is
one difference. As ordinal data, interval data is ranked. But additionally, the steps
between the scale points are of the same size. A very simple, but very good example
is age. The age difference between a 10 year old and a 20 year old is exactly the
same as the difference between a 50 year old and a 60 year old. The same was
not true for the ordinal level! The difference between a high school diploma and
a bachelor is not the same as the difference between a master’s and a doctor’s
degree. In fact nobody can really tell what the difference between two degrees is
(in measurable terms of distance).

It is important to note that there is some kind of ranking in the scale levels themselves.
Interval scale data represents the highest value in this ranking. This is not only because
it provides more information than the lower levels, but because the higher the level,
the more mathematical operations are possible. And there is also the following rule: A
mathematical operation that can be applied at one level can also be applied to the next
higher level. This means, for example, that all operations that are possible for ordinal
level data can also be applied to interval level data.

5. Measures of central tendency
Let’s look at two very simple mathematical operations we can apply. The first one is
called the ‘mean’ (or ‘arithmetic mean’) and I’m sure you know what a mean is and how
it is calculated. However, if you are not trained using formulas, the equation for the mean
might look at little bit scary at first:

x̄ =

n
∑

i=1
x1

n
(6)

There are several things in the formula. Letters, numbers and the sign ∑ which is the
Greek letter sigma that tells us that we deal with a summation. Let’s look at the letters.
There are three of them, namely x, n, and i. With n we mean the number of data points
we have, i. e., the number of measurements. With x we refer to the individual values we
measured. The small x̄ with the bar on its head is our mean. Finally, there is a small i.
We do not care much about it. It is just an index that tells us that we should start our
addition with the first value. The formula just says that we should sum up all the values
we measured starting with the first one and divide them by the number of measurements.
Assume, we asked 10 people how old they are. As every person has only one age, our n

equals 10. What they tell us is the following:
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20, 18, 19, 24, 24, 23, 23, 98, 14, 17

Those 10 data points are our 10 xs. If we wanted, we could assign labels to them in the
way x1 = 20, x2 = 18, x3 = 19 and so on. Applying the formula in 6 we get:

x̄ =
20+18+19+24+24+23+23+98+14+17

10
=

287
10

= 28.00 (7)

This means that the mean age of our participants is 28.00. However, there is one odd
thing in our calculation. You surely have noticed that there is one very old person in
the group who is 98 years old. Yet, the mean age is still pretty low. But if you compare
the mean age with the ages of the participants excluding the 98 year old, the mean age
actually is pretty high. This a not good and is actually a misrepresentation of our data.
The reason for this is that the mean is a point measure. Point measures are not very
informative. For this reason we will see more measures in a second.

When you think back to the scale levels you will notice that the calculation of the
mean only makes sense for interval data. It does not make sense to calculate a mean
for ordinate level data. If you sum up the numbers you assigned to academic degrees of
people and divide it by the number of people you will get some crazy number you cannot
make sense of.5

Let’s get back to the question of what to do with the fact that our point measure
is skewed by one very high data point. There is a measure that is not susceptible for
outliers as the mean is: the median. The median is defined as the value above which
50% of the values lie. A logical consequence of this definition is, of course, that the other
50% of the values lie below the median. Thus, the median is some kind of middle value.
Let’s look at an example. In the following table you see the grades of 11 people in two
subjects (music and math). As they attend a German school, they were graded from 1
(excellent) to 6 (insufficient). We calculate the median and not the mean in this case,
because grades are not interval, but ordinal data. This is because the distances between
the grades are not defined, i. e., you cannot say that, for example, a 6 is double as bad
as a 3.

5You can do this of course, the numbers don’t care. Actually there is an entertaining paper by Lord
(1953) about a similar case. It’s called “On the statistical treatment of football numbers”.
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Pupil Grade (music) Grade (math)
Hans 3 1
Daniel 3 1
Eva-Maria 1 4
Theresa 6 1
Lorenz 5 4
Julian 4 2
Torolf 1 3
Gökce 1 4
Katie 3 2
Philip 2 4
Ursula 1 —

To calculate the median grade in music we simply order the grades: 1, 1, 1, 1, 2, 3, 3, 3,
4, 5, 6. The median is the number in the middle, i. e., 3. This is not as easy for the math
test, since there is no middle (Ursula was sick). Nevertheless, we order the numbers: 1,
1, 1, 2, 2, 3, 4, 4, 4, 4. To arrive at the median, we take the two numbers that are in the
middle (2 and 3) and calculate their mean: 2+3

2 = 2.50.

Remember that the mean we calculated for the ages of 10 peoples was 28.00. If we
calculate the median of their ages we get 21.50. This number seems to capture the ages
of the individuals more naturally. That the median does not care about outliers can be
illustrated by the following fact. There was one person of the age of 98. If this person
was not 98, but 969 years old (as Methuselah), the median still would be 21.50, but the
mean would be 115.10.

Finally, there is also a measure of central tendency which is called ‘mode’. The mode
is simply that value that occurs most often. It can be applied to nominal data. As I said
that mathematical operations that can be used on one scale level can also be used on
higher levels, the mode can be calculated not only for nominal scales, but also for ordinal
and interval data. The median can be calculated for ordinal and interval data and the
mean only for interval data. This is depicted in Figure 4.

6. Measures of dispersion: The standard deviation

The point measures we have seen so far are only of limited use as was illustrated by the
mean of the ages of 10 people. Another example would be the mean ratings of 10 items.
Suppose, there are 10 images and people are requested to rate how much they like the
image on a rating scale from 1 (‘I hate it’) to 10 (‘I love it’). Participant 1 rates all the
images with a 5 (5, 5, 5, 5, 5, 5, 5, 5, 5, 5), because they all seem to be mediocre to him.
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Type of data

Interval data

Mode
Median
Mean

Ordinal data

Mode
Median

Nominal data

Mode

Figure 4: Measures of central tendency and scales of measurements

Participant 2 likes half of the images and dislikes the other half. His ratings look like: 8,
2, 8, 2, 8, 2, 8, 2, 8, 2. In both cases, the mean will be 5 and thus the mean does not tell
you pretty much about the dispersion of the values.

You have already heard about the bell curve and about the regression to the mean
(the mathematical concept behind this is called ‘central limit theorem’). Bell curves can
look very different, but all bell curves have one thing in common: they all have one peak
(the mean) and are symmetrically organized around this peak. However, some bell curves
are very slim, so the values around the mean do not vary much and other bell curves are
wider, so the values spread more around the mean. One of the most popular measures
of dispersion is based on how bell curves look: the standard deviation (abbreviated SD
or σ). The standard deviation allows you to mathematically describe the shape of a bell
curve.

At this point I want to draw your attention to a very important issue I have already
talked about, but since it is very important, I will take some space to say a few more
words. You have to keep two things apart: On the one hand there is a population that
you cannot access and on the other hand there is the data you collected that stems from
this population. Your population consists of a probably infinite set of values (as you can
ask an incredible amount of participants for judgments of an infinite number of sentences
that use the construction you’re interested in). The data you have is just a random
sample from this population. You are interested in the population, but you only have
your data. What you want is to measure parameters (that mathematically describe your
population), but you only have some data points. Those data points, however, stem from
the population and you have an assumption about your population, namely that it is a
normal distribution, i. e., that it is bell-shaped. What this means is that if you collect
enough data you can approximately calculate the underlying normal distribution. Think
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Figure 5: You do not need as much data as in the examples here to be able to get an
approximation of the underlying distribution. On the left: the distribution of heights of
500 US citizens (based on Nuñez 2007). On the right: the distribution of grades (again:
German grades from 1 to 6) of the same essay given by 88 different elementary school
teachers (based on Birkel & Birkel 2002). In both cases a normal distribution arises.

about the elephants again. Assume that there are 1 million elephants in total.6 If you
measure all of them you would get a normal distribution. However, you do not need to
measure all of them, but only a wisely chosen subset of them. All the elephants out there,
namely 1 million elephants, are called the ‘population’. The subset you chose for your
measures is called ‘sample’. Figure 5 gives you more examples to understand this.

Make sure you have read the caption of Figure 5. The height of the US-citizens depicted
on the left is in fact an example that is not very different from the elephant example,
except that we are talking about people and height instead of elephants and size. As you
can see from the data, the mean height is 68 inches. You can also see that the data is
distributed in a way that nearly forms a bell curve. The curve is not perfect, but given
that it is only based on measurements of 500 people it is impressive how perfect it looks.
If you were to measure more and more people, the curve would look smoother. If you had
an infinite number of measurements the curve would be perfectly smooth and symmetric.
A perfectly smooth and symmetric curve can be described mathematically. We will call
this curve the ‘underlying distribution’. The problem with underlying distributions is
that they are rarely achievable, as knowing an underlying distribution would require us
to have access to the entire population we are interested in.

An underlying distribution has a mean and a standard deviation. While we have
called the mean of some measurements we have obtained x̄ (as it was created out of the
individual measures x1, x2, x3 etc.) we call the mean of a distribution µ . This value is
fixed for each distribution. This is a value we’re interested in, but also a value we don’t

6Sadly, there are less elephants in the world in reality.
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know. On the other hand we have x̄, the mean we calculated from our data. This value is
our best guess of µ . We also have two standard deviations, namely σ and SD (or s). As
you can guess, σ is the standard deviation of the underlying distribution that we don’t
know and s is our best guess of σ , i. e., the standard deviation we calculated from our
data. The unknown numbers µ and σ are the parameters that define the shape of the
distribution.

As I said, the standard deviation describes the form of a bell curve. When the SD is
small, then most values are close to the mean (if the SD is 0 than all values are equal
to the mean and there is no variation at all). When the SD is big, the values scatter
around the mean to a greater extent. I want to stress that the SD describes the form
of the distribution and is not its length. If you only knew the mean and the span of a
distribution you still do not know how the bell is shaped and thus, your information is
pretty much worthless. This is because there is much more information hidden in the SD

than you may think. Before we look at these information, we take a quick look at the
way the SD is calculated:

SD =

√
∑n

i=1(xi − x̄)2

n−1
(8)

The formula tells us, that the SD is calculated as the square root of something. This
something is a sum divided by the number of data points (n) minus one. We have already
seen a sum divided by the number of data points earlier, namely the mean. Thus, what
is inside of the square root is very similar to a mean. It is not easy to explain why we
divide by n−1 instead of n. The easy explanation is that you actually would divide by
n if you would calculate the standard deviation of the population (i. e. σ). As you only
have some data points, your SD is only an estimate of σ . And as estimates have an error,
you want to somehow try to keep this error as small as possible. This, in short, is what
dividing by n− 1 does. The bigger your sample is, the smaller the difference between
dividing by n− 1 and dividing by n will be. In other words: The bigger your sample,
the smaller your error will be. In fact, things are a little bit more complicated. If you
are interested in this, you should look for the terms ‘Bessel’s correction’ and ‘degrees of
freedom’. For now, however, we just say that we divide by the number of data points and
just subtract 1 to try to correct an estimation error.

In the upper part of the formula you see that a sum is calculated. It is the sum of the
quadratic deviation of all your data points from the mean x̄. If you think of a bell curve,
this makes complete sense. A bell curve is symmetrical around a mean. If you want to
know how the data points scatter around the mean, you want to know some kind of mean
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Figure 6: The relation between the standard deviation and the normal distribution (in
this case, the standard normal distribution)

value of how all the data points diverge from x̄.7 As these data points are symmetrically
organized around x̄ simply adding up how far away they are from x̄ results in 0 because
some values are higher than the mean so they are positive and some values are lower
than the mean so they are negative. This is fairly understandable: Adding positive and
negative values results in zero. This is prevented by the squaring. At the end you get
rid of the squaring via the square root. This means that most of the formula is a simple
trick that prevents the whole thing from being 0. The most important thing to know is
that the SD is a measure of the dispersion of your data around the mean. Note that the
SD always has the same unit as your data.

Now, we come back to the special properties of the SD. The good thing is that
although these properties are mathematical in nature, we can actually see them in a
picture as in Figure 6. In the middle of our distribution we can see our mean. In this
case, the mean is 0 (normal distributions with µ = 0 and σ = 1 are often called ‘standard
normal distributions’). The bars represent our standard deviations. In the area of ±σ
around the mean are 68.2% of all values and in the area of ±2σ there are 95.4% of all
the values.

There are more measures of dispersion, such as the interquartile range or the standard
error of the mean. I will only briefly talk about the standard error of the mean. The
standard error of the mean, SEM for short, is calculated as the standard deviation divided
by the square root of the number of your data points:

7You’ll get this mean value by dividing the whole thing by n−1.
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SEM =
SD√

n
(9)

As we divide by the number of data points, the SEM gets smaller the more data points we
have. You don’t need to understand what’s really going on in this formula to proceed. We
just need the SEM for many calculations in statistics. But note that there is a difference
between SD and SEM. Additionally, there are many more statistical measures of disper-
sions. Many of them are used as error bars in plots. This means that you always have to
indicate which error measure you have used, otherwise your reader cannot interpret your
plots. In other words: Error bars without descriptions are useless information.

7. More about populations and samples

I have already stressed several times that there is a strict difference between the pop-
ulation and the sample. You want to know something about the population, but you
only have a sample. This conceptual difference is marked in the way we write about
populations and samples. Values that refer to the population are written in uppercase
and values that refer to your sample in lowercase. Assume we want to know how long a
specific endangered species of lizards is. There are only 1.240 lizards (I’m making these
numbers up). Our population consists of N = 1.240. That’s a lot of lizards! You don’t
have the time (or money) to measure them all. What you need to do is to take a random
sample and measure this sample. Let’s say, you take 20 of them. We write this down as
n = 20. We can refer to each of the 20 values by a lowercase letter: x1, x2, x3, x4 …x20.

Besides Latin letters, we also use Greek letters. They are used for population param-
eters that are gained through mathematical operations (this is not so consistently used,
however). For example, the sample mean is written as x̄ and the population mean is
written µ . If you look at Formula 9 again, you directly see that this is the formula to
calculate the SEM of a sample. If you wanted to calculate the SEM of a whole population
you would have written this instead:

SEM =
σ√
N

(10)

Let’s get back to our 1.240 lizards. At the top of Figure 7 you see the lengths of all 1.240
lizards (each dot represents one length). The distribution is the thing we want to know,
but usually the thing we don’t know. The mean length of our lizards is 5 centimeters
(µ = 5). As you can see, the population of lizard length is normally distributed, meaning
that few are very short and few are really long (one of them indeed is veeeeery short and
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one of them veeeeery long). Now look at the very bottom of the figure. There are 20
white circles forming a horizontal line. These circles represent a random sample of 20
lizards you caught and measured. Again, some of the lizards you caught are very short
and some are very long. Although I’m making this up, the values you see really represent
a random sample I’ve taken these values from the population via computer simulation.
Let’s get back to our 1.240 lizards. In the top of Figure 7 you see the lengths of all
1.240 lizards. The distribution is the thing we want to know, but usually the thing we
don’t know. The mean length of our lizards is 5 centimeters (µ = 5). As you can see,
the population of lizard length is normally distributed, meaning that few are very short
and few are really long (one of them indeed is veeeeery short and one of them veeeeery
long). Now look at the very bottom of the figure. There are 20 white circles forming a
horizontal line. These circles represent a random sample of 20 lizards you caught and
measured. Again, some of the lizards you caught are very short and some are very long.
Although I’m making this up, the values you see really do represent a random sample
I’ve taken for these values from the population via computer simulation.

There is another set of circles in the figure, namely a bunch of gray circles. Again,
I gained these values by computer simulation. Each gray dot represents a mean of 20
randomly chosen values taken from the population. As you can see, each x̄ is surprisingly
close to the real mean µ . But you can also see that each estimation, each x̄ is different.
Some are closer to the real mean, some are farther away. Think about this for a second!
Does it ring a bell?

8. Confidence intervals

If you take several samples from a population and calculate the means of your samples,
some means are closer to the real mean and some are farther away. Suppose we do
this again and again. The means we calculate will be normally distributed (i. e., a bell
curve will emerge)! Of course, you will say, our population is also normally distributed.
However, even if the population is NOT normally distributed, a large enough sample of
means from this population will be normally distributed (see also Pearson 1931; Boneau
1960). It’s like magic! And this magic helps us a lot since we do not really need worry if
our underlying distribution is normally distributed or not.

My main point, however, is the following: Think about what happens when we take
a lot of samples and calculate a lot of means. Suppose we pile up our means and look at
them. Again, I ran a computer simulation that is depicted in Figure 8 (see Cummings
2012). The top of the figure shows the lengths of our lizards again. At the bottom you
see that I took 254 random samples and calculated their means (so each dot is one mean).
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Figure 7: Top: the length of 1.240 lizards; a normally distributed population with a mean
of µ = 5. Bottom: look at the white circles first. They represent a random sample of
the length of 20 lizards. Some of them are very short, some are very long. Now look at
the gray dots. Each of the dots represents the mean of a randomly chosen sample of the
length of 20 lizards. They are all pretty close to µ !

Some means are closer to the real mean than others.

When you look at the top half of the figure, you see that there are four lines in the
population. Those represent the standard deviations of the population. We know that
approximately 96% of our data lie between ± 2 standard deviations. To be more precise:
95% of the data lie in the range between −1.96SD and −1.96SD (the outer lines). As
the SD is something you can calculate for a normal distribution, there is also an SD for
the distribution that is formed by the 254 means I calculated from random samples! You
can see them at the bottom of the figure. Again, we know that 95% of the values, that is
95% of the sample means, lie between ±1.96 standard deviations (i. e., between the outer
lines). Think of it and make sure you understand what happens! This is really hard to
process, but once you get it, it makes a lot of sense! Take a break and perhaps re-read
parts of the tutorial.
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Figure 8: 254 means calculated from equally many random samples from a population

Now imagine what happens to you as a lizard researcher. You only had time to
measure 20 lizards. You neither know the real mean µ from the population nor do you
have many sample means. You do not know how close your mean x̄ is to the real mean µ .
But statistical knowledge nevertheless will help you determine how good your estimation
x̄ is. Look at Figure 8 again. At the bottom half we can see that there are sample means
that have the same value as the real mean. At the very bottom of the figure there are
two horizontal lines. Look at the centered one. The vertical line in the middle of the
horizontal line indicates a sample mean (that is identical or at least very near to the
real mean). The two ends of the line represent −1,96SEM of the sample means and
+1,96SEM respectively. 95% of the sample means I calculated are in this area.

Now there is one white dot in the bottom of the figure. Suppose that this is the
mean you calculated from your 20 measures. If we look at what happens when we take
−1,96SEM and +1,96SEM into account, we get the line at the very bottom of the figure.
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Although our mean is rather far away from the real mean, the line still includes the
real mean. Do you know how big the chances are that the real mean is inside the bar
indicated by the line? It’s 95%! We call this a 95% confidence interval since you can be
95% confident that the real mean is within this line.

However, as a real lizard researcher you do not have 254 means, but only one. But
from the 20 data points you have, you can still calculate a 95% confidence interval. I will
give you the formula for this although in reality, your computer will calculate it for you:

95% confidence interval: [x̄−1,96× s√
n
, x̄−1,96× s√

n
] (11)

This formula will lead to two values in the format [y1, y2]. These two values are the ends
of the lines I just showed you in the last figure. Note that this is the formula for a 95%
confidence interval for the mean. You can calculate confidence intervals for measures
different from the mean, but then you will need to use other formulas. We will see the
95% confidence interval again.

Excursus: Confidence Intervals and the Standard Error

The formula to calculate a 95% confidence interval includes a mean x̄ you calcu-
lated and ±1.96SD. As you know from Figure 8 there are two SDs: one for the
population and one for the sampling distribution of the sample means (actually,
the SD you really calculate is a third SD: the one you get from your 20 samples).
I don’t want to confuse you, but the standard deviation of this sampling distri-
bution of the sample mean has its own name and you already know it! It’s called
the standard error (SEM). If you’re interested in this I would recommend read-
ing Cummings (2012). He also has a bunch of cool and easy to watch Youtube
videos.

9. Behind the scenes: parameters (and more about distributions)

We have already heard about the normal distribution. There are, however, more distribu-
tions. We call them probability distributions. Distributions model an entire population.
As you will never (or only in very rare cases) have the chance to look at all the data points
that exist, you have to choose. In our case, that is in grammaticality judgments, you will
have to choose some participants, some sentences, and will get some judgments. There
is, however, an infinite set of judgments (the population). This infinite set has a mean

https://www.youtube.com/watch?v=iJ4kqk3V8jQ
https://www.youtube.com/watch?v=iJ4kqk3V8jQ
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and, as you know, there will be extremes on both sides of the distribution. Take a look
at Figure 2 again. A lot of judgments will lie in the middle, and only some at both ends
(if we make the assumption that the judgments will follow a normal distribution, but we
don’t have to worry about the details now). If you ask one person for one judgment of
your sentence under consideration, how likely will it be that you will get a judgment that
is near the mean compared to a judgment that lies near one of the ends? Do you already
see what I’m heading for? Yes, it is a question of probability!

So, besides the normal distribution, there are several other probability distributions.
We don’t have to care too much about them. What you have to know is what characterizes
a distribution like the one in Figure 2. In other words: How can we, mathematically,
describe such a curve? What we need was discovered by the English mathematician
Karl Pearson. He found that there is a fixed set of numbers that describe a probability
distribution:

• The mean

• The standard deviation, a number that describes the dispersion of the values around
the mean

• The symmetry of the curve

• The kursosis, how far the rare values are dispersed around the mean

Again, we don’t have to care about the exact mathematical representation of those num-
bers in detail. What you have to know is that you can describe a probability distribution
mathematically. The numbers that are used in this description are called ‘parameters’
(derive from Greek meaning ‘almost measurements’). Pearson’s discovery cannot be
underestimated. He stated that science should not deal with phenomena that can be
observed, but with the things behind those phenomena: You cannot observe a proba-
bility distribution. Nevertheless, behind each observable phenomenon, there is such a
distribution. Again, I will cite Salsburg (2001) and recommend reading his book:

Pearson proposed that […] observable phenomena were only random reflec-
tions. What was real was the probability distribution. The real “things”
of science were not things that we could observe and hold but mathemati-
cal functions that described the randomness of what we could observe. The
four parameters of a distribution are what we really want to determine in a
scientific investigation. (Salsburg 2001:17)
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The point is: You, as a linguist, want to know if a certain grammatical construction exists
in the minds of the speakers of a language. You cannot access this directly. The same is
true for the parameters of a probability distribution. They are not determinable. What
you can access are judgments of sentences. You can take some sentences and get some
judgments. Those are random data points drawn from a population of infinite judgments,
i. e., data points from a probability distribution.

There is another important point that will be relevant later when we learn about
the question of how many data points and subjects we need: One of the pioneers in
the development of statistics was the English statistician William Sealy Gosset. Gosset
started to work for the Guinness Brewing Company in 1899 and developed a method
that helped with the measurement of yeast. Guinness did not allow its employees to
publish their discoveries, so Gosset decided to publish his insights under a pen name.
The pseudonym he used in many influential papers was “Student” (you may already
know the Student’s t-test).

You already know this: There is an unobservable population (all the possible data
points), i. e. a probability distribution that can be described via its parameters. Those
parameters are not accessible. What is accessible is a random sample (your participants’
judgments). Statisticians before Gosset aka Student believed that you would need thou-
sands of data points to calculate the parameters you want to know. Gosset, however,
wanted to deal with small samples. One of his great discoveries was that you don’t
need large samples. Assuming that your data on the whole follows a normal distribution
you will find the approximate parameters of this distribution without knowing the exact
numbers for all parameters. Instead you only need a small amount of data points.8

Even more important, later researchers found that Gosset’s original assumption about
normal distributed data wasn’t even necessary. This means that applying Gossets meth-
ods (i. e., Student’s t-test which we will see later on) works for data that may not be
normally distributed behind the scenes.

Now you are equipped with some statistical background. The next things we will
take a look at is how to create a questionnaire. This is actually not a big deal and thus
this section will be rather short. After this section about designing and conducting your
judgment study we take a look at how to analyze and visualize the data.

8You really don’t need to know this, but for a better understanding you might want to know this:
The normal distribution is one type of probability distribution. There are others. As I said, a probability
distribution can be described mathematically by a function that is made up of four parameters. The
normal distribution, however, can be described by using only two parameters, namely the mean and the
standard deviation, because the symmetry and the kurtosis are fixed.
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Part II

Designing a questionnaire and conducting
your study

10. How to create the questionnaire: the stimuli

The most important part of your study will be your stimuli, of course. In the most simple
case you want to compare two constructions A and B. Suppose construction A involves
the linear order of two parts of speech XZ and construction B the linear order ZX which
you hypothesize to be ill-formed. You would create let’s say 5 sentences with the order
XZ and 5 sentences with the linear order ZX (we will see in the next section that you
actually need to create more sentences). The sentences should be minimal pairs. This
means that your stimuli could look like the following:

Construction A Construction B
Last week, Peter XZ went to the store. Last week, Peter ZX went to the store.
This morning, Anne XZ bought a beer. This morning, Anne ZX bought beer.
Yesterday, a man XZ came to my house. Yesterday, a man ZX came to my house.
Tomorrow, Jun XZ will give me the present. Tomorrow, Jun ZX will give me the present.
Next year, Laura XZ will graduate. Next year, Laura ZX will graduate.

The examples show that there is as little variation as possible between the sentences to
be judged in the two conditions. How the stimuli will look will, of course, depend on the
goal of your study. In fact, there are some things in the example above you might want to
avoid: While there is not much variation between the conditions there is much variation
inside conditions. There is, for example, variation with respect to the verb structure,
concerning definiteness, or concerning tenses in the examples above. You might want to
control those things. So better just create one template sentence and just exchange the
words:

Construction A Construction B

Last week, Peter XZ visited a concert. Last week, Peter ZX visited a concert.
This morning, Anne XZ bought a beer. This morning, Anne ZX bought a beer.
Yesterday, Rainer XZ saw a movie. Yesterday, Rainer ZX saw a movie.
Last fall, Jun XZ wrote an article. Last fall, Jun ZX wrote an article.
Last year, Laura XZ found a watch. Last year, Laura ZX found a watch.
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Now there is as little variation as possible not only between conditions, but also inside
the conditions. All sentences now have a definite subject, are in the past tense, contain a
transitive verb, and an indefinite object. Depending on the goal of your study these may
be aspects you want to control.

Now your test items are prepared (actually, we will see in the next section that we
need more example sentences). Do you need more? Yes! Additionally, you want to do
one of two things (or both, if the study’s design allows):

• You can add some (let’s say 5) grammatical sentences and some (again, 5) com-
pletely ill-formed sentences in your questionnaire. The data you obtain from those
sentences can be used as anchor values against which you can interpret your ac-
tual data (and this may be very helpful). Additionally, this method may help you
find out if a participant really understood the task or just randomly filled out your
questionnaire.

• You can present the participants with some grammatical sentences as examples of
natural sentences and some completely ungrammatical sentences as examples of
unnatural sentences to your participants at the beginning of your study. This helps
your participants to get a feeling of what is meant with ‘natural’ and ‘unnatural’
sentences.

Sometimes researchers include unannounced practice items to familiarize participants
with the task. Thus, they include several well-formed and ill-formed sentences at the
beginning of the questionnaire (Schütze & Sprouse 2013). However, this is only necessary
if your participants are not used to the Likert response format (which I guess many people
know).

In some cases your questionnaire might consist of many very similar sentences. In this
case participants will start to like constructions that they originally didn’t like because of
the mere exposure effect (see below). In such a case you should include filler sentences,
i. e., sentences that do not have anything to do with your study. Filler sentences are
often used in experiments to prevent participants from uncovering the true purpose of
the experiment (as this might influence the results). Linguistic judgments, however, often
are very stable, so you do not have to distract people from the purpose of your study.
However, if you are interested in a construction from which you have the feeling that
reading it several times may confuse people, use fillers. If you decide to use fillers, be
aware that the filler sentences can have an influence on the ratings of the actual sentences
to be judged. This means that if you, for example, include only highly acceptable filler
sentences, participants may be biased and judge your actual sentences better or the other
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way around. I recommend following Cowart’s (1997:52) advice: “The best strategy is to
include a balanced list of fillers that includes approximately equal numbers of sentences
at a wide range of acceptability values.” I recommend using as many fillers as you have
test items. See also the following helpful quote:

[Filler items] can serve at least three purposes. First, they can reduce the
density of the critical comparisons across the whole experiment, reducing the
chances that participants will become aware that a particular sentence type
is being tested, which could trigger conscious response strategies. Second,
they can be used to try to ensure that all the possible responses […] are used
about equally often. This helps to protect against scale bias, which occurs
when one participant decides to use the response scale differently from other
participants, such as only using one end of the scale (skew), or only using a
limited range of responses (compression). (Schütze & Sprouse 2013:39)

11. Use Latin squares for counterbalancing

The procedure presented so far leads to a situation in which one and the same participant
sees pairs of sentences using the same lexicalizations only differing in construction type.
Especially when your constructions are very similar this can be problematic as the sen-
tences to be rated may become too similar lexically although they differ in grammatical
construction. This can lead to carryover effects, meaning that judging the lexicalization
of one construction can influence the judgment of the same lexicalization of another con-
struction (thus, on the one hand we want our items to be as similar as possible, but on
the other hand, repetition of too similar items is undesirable). This, indeed, is a serious
concern. A way out is to use a Latin square design which will ensure that each partici-
pant only sees one lexicalization of each condition. Latin squares are a powerful tool for
counterbalancing your items.

Excursus: Counterbalancing

Empirical investigations often include unbalanced situations that need counter-
balancing. Suppose, you do a forced-choice task. Participants in your study are
presented with words and pseudo-words and need to decide if a stimulus they
see is a word or not. To do this, they press buttons. There are two buttons
in this design, a ‘yes button’ and a ‘no button’. There are not many ways to
present the buttons. One way is that the no button is on the left and the yes
button is on the right of a keyboard. One problem will be that most people are
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right-handed and reactions with the dominant hand are generally faster than
reactions of the non-dominant hand. Thus, the design is not balanced. One
idea would be to ensure that 50% of the participants are right-handed and the
other 50% are left-handed. However, finding left-handers is more difficult than
finding right-handed participants, so this is impractical.

Another solution would be to only study right-handers. In 50% of the trials
the yes button is on the right and in 50% of the trials the yes button is on
the right. This is a very simple case of counterbalancing. However, in most
cases, your variables won’t only have two, but more levels and counterbalancing
will get more complicated. In this case, a Latin square is a powerful tool for
achieving partial counterbalancing.

First, let’s look at the basics of how a Latin square works and then let’s look at examples.
A Latin square is square—what a surprise! It has as many columns as rows. To start
with a simple example, we look at a 4×4 Latin square:

A B C D
B C D A
C D A B
D A B C

Each letter in a Latin square represents one condition. In this example, there are 4
conditions (A, B, C, and D). Each condition appears only once in each row and in each
column. Thus, condition A in the first row only appears once and condition A in the first
column only appears once. Suppose you want to make the following crazy study: You
want to know if participants’ judgments of the acceptability of sentences get worse when
they are exposed to an unpleasant odor. There are 4 levels of odor you want to study.
Condition A is neutral (without odor), in condition B participants are exposed to the
odor, but only a little bit, condition C is a stinky condition, and condition D is a heavily
unpleasant very stinky condition. Thus the odor increases from condition A to D. If you
plan to do a within-subject design each subject will judge sentences in each condition.
The problem now is that if a participants rate sentences in condition A, condition B,
condition C, and finally in condition D, the participant may get used to the odor. Other
orders may lead to similar carryover effects, however. Being first presented with sentences
in condition D, then in condition C, for example, may have a similar effect. One way out
would be to counterbalance the design and study each possible combination of conditions.
With 4 conditions, we get 24 possible combinations. If we would test one participant per
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combination, we would need 24 participants. If our study had 6 conditions instead, there
would be 720 possible combinations, however. Thus, a completely counterbalanced design
often would be very effortful. The Latin square is a way out. As you can see from the
Latin square above, there are not 24 different combinations of the 4 conditions, but only
4 (each row). Note that this, of course, does not mean that you only need 4 participants.

Now let’s look at a linguistic example. We look at how Sprouse, Wagers & Phillips
(2013) used a Latin square for studying island effects. Their study is a multifactorial
design. As we haven’t talked about multifactorial designs yet, let’s do that first.

Excursus: Multifactorial designs

The more complex your research question gets the more complex your research
design will be. Very often, you do not want to compare 2 constructions, but
there are more variables you want to manipulate. If you have 2 constructions A
and B there is only one independent variable that you manipulate. This variable
is construction type and has 2 levels. However, you could, for example assume
that judgements could be influenced by other factors as well, for example, by
aspect. This variable could have, to stick with an easy example, also 2 levels,
for example, you want to compare sentences in simple present (‘Paul sits in the
garden’) with sentences in present progressive (‘Paul is sitting in the garden’).

You can now test construction A with and without the aspectual marker
(the -ing form) and construction B with and without the aspectual marker.
Only comparing construction A and B would be called a single-factor design as
there is a single factor, namely construction type (in this case with 2 levels).
Studies with more than one factor are called multifactorial (or simply factorial)
designs. In our simple example we are dealing with a 2×2-design. This means
that we have 2 factors with 2 levels each (if you would have 3 factors with 2
levels each we would call it a 2×2×2-design).

Multifactorial designs are designs in which several independent variables are
studies at once. Two types of effects could be observed in our example study. It
could be, that judgments differ based on construction and/or based on aspectual
changes. We would call such effects of an independent variable main effects.
Additionally, it could be that we observe effects which come into being through
a combination of construction type and aspect. We would call such an effect an
interaction effect.
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Sprouse, Wagers & Phillips (2013) were interested island effects. A syntactic island is a
configuration from which movement is banned. Their starting point is wh-movement out
of an embedded whether clause. This kind of movement is banned in English as whether

clauses are islands:

(1) *Whati do you wonder whether John bought t i?

One assumption to draw from this example could be that extraction out of an embedded
clause is ill-formed in English. However, this cannot be the case as well-formed examples
can be constructed with that clauses:

(2) Whati do you think that John bought t i?

This sounds rather easy, but we already have 2 factors/variables with 2 levels each: Is it
the embedding that causes the island effect (±embedding) or is it the presence of whether

(±whether)? Sprouse, Wagers & Phillips (2013) label the factors ‘structure’ and ‘gap’.
The first factor has the two levels ‘island/non-island’ and the second factor has the levels
‘matrix/embedded’. By crossing the factors we get 4 possible combinations:

(3) a. *Whoi t i thinks that John bought a car? ‘non-island/matrix’
b. *Whati do you think that John bought t i? ‘non-island/embedded’
c. *Whoi t i wonders whether John bought a car? ‘island/matrix’
d. *Whati do you wonder whether John bought t i? ‘island/embedded’

Note that the condition represented in (3a) serves as a baseline condition as it represents
the unmarked levels of both factors. What the sentences in (3) illustrate is a basic
2×2-design. Let’s look at how a Latin square could be created. The 2×2-design leads
to 4 different conditions. This means that we can create 4 lists using a Latin square.
If you want that each participant is presented with each condition 5 times, you would
need to create 5 lexicalizations sets for 4 lists (i. e., 4× 4× 5 = 80 target sentences).
An easy way to do this is using Excel or OpenOffice as described by Simone Gieselman
here: http://idiom.ucsd.edu/~simone/Tutorial.html. Another way to
do this would be to use the Python script ‘turkolizer’ described in Gibson, Piantadosi &
Fedorenko (2011).

Let’s briefly look at how to achieve this in Excel or OpenOffice following Simone
Gieselman’s tutorial. We basically need 3 columns: A column for the list numbers,
a column assigning each example a number (this makes sense if you feed your data in

http://idiom.ucsd.edu/~simone/Tutorial.html
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another program, for example, if you use WebExp), and a column for the actual examples.
The results will look like the following (I added a condition column for a better overview):9

The list column is structured as follows: 1, 2, 3, 4; 2, 3, 4, 1; 3, 4, 1, 2; 4, 1, 2, 3; 1, 2, 3,
4; … This is the pattern we saw in the Latin square. Now you can select the first column
and click on the ‘data’ menu and click ‘sort’. This will sort the items by lists and the
result will look like this:

9There are not the real examples used in the study, but some quickly made-up examples.
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For a better overview, it makes sense to open a extra worksheet for each list (you see the
worksheets on the bottom of your window). So copy each list in a worksheet:

Now you can create another worksheet for your fillers and copy the fillers underneath
each list (depending on what you will do exactly later on it can be useful to label the
fillers to identify them later). If you want to randomize your items right now you can do
this, although there are programs that will do the randomization when the stimuli are
presented. To randomize the order manually, add a new column labeld ‘random number’
and type in ‘=RAND’. This will create a random number. Fill all rows with random
numbers next. Schematically, this will look like this:
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If you now select the ‘random number’ column you can sort the items again. This will
result in a random order:
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Finally, manual changes can be made if necessary, for example, if you want each list to
start with a filler. Note that we now can randomly assign participants to lists which
makes our judgment task more similar to a real experiment.

Latin squares can be easily used for more complex tasks. Sprouse, Wagers & Phillips
(2013) original study, for example, was more complicated than presented so far: Besides
whether islands, there are other island types. They tested 4 different island types, namely
whether islands, Complex NP island, Subject islands, and Adjunct islands. These 4 island
types represent the 4 main conditions they used to create a Latin square resulting in 4
lists. The 4 main conditions with the 2×2 manipulation in each condition look like this:
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• Condition A: whether islands

– non-island/matrix

– non-island/embedded

– island/matrix

– island/embedded

• Condition B: Complex NP islands

– non-island/matrix

– non-island/embedded

– island/matrix

– island/embedded

• Condition C: Subject islands

– non-island/matrix

– non-island/embedded

– island/matrix

– island/embedded

• Condition D: Adjunct islands

– non-island/matrix

– non-island/embedded

– island/matrix

– island/embedded

The overview shows that there is a total of 16 critical conditions. I will end this section
by a brief summary of how they created their lists:

Four island types (whether islands, Complex NP island, Subject islands, and
Adjunct islands) were tested, each using a 2 × 2 manipulation of extraction
and structural environment […], yielding a total of sixteen critical conditions.
Eight additional sentence types were included to add some variety to the
materials, for a total of twenty-four sentence types. Sixteen lexicalizations
of each sentence type were created, and distributed among four lists using a
Latin Square procedure. This meant that each list consisted of four tokens
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per sentence type, for a total of ninety-six items. Two orders for each of
the four lists were created by pseudo-randominzing the items such that re-
lated sentence types were never presented successively. This resulted in eight
different surveys. (Sprouse, Wagers & Phillips 2013:34)

12. The instructions

You usually do not want to ask linguists to participate in your study. Linguists have
theories and hypotheses in mind about a lot of linguistic phenomena—a fact that could
have an influence on their judgments (see e. g., Bolinger 1968; Carden 1976; Schütze
2016).10 Thus, I recommend consulting linguistic laymen (or at least undergraduate
students). With this, the next problem arises: You can ask a non-linguist a question like
‘How grammatical is this sentence?’ But what will happen? The term ‘grammaticality’
means something completely different to people who have not studied linguistics: They
usually think of prescriptive grammars—and that’s exactly what you don’t want!

In practice, this means that you have to explain the task as exactly as possible. The
best option clearly is to avoid terms like ‘grammar’ or ‘grammatical’ completely and
just stick with something like ‘natural’. A possible phrasing is: “In the following you
will be presented with a number of sentences. We are interested in how people actually
use language. You will be asked to rate each sentence. Please rate each sentence from
1 meaning ‘totally unnatural’ to 7 ‘absolutely natural’. A sentence is considered to be
natural a) when you would use the sentence in everyday life or b) you would expect your
neighbor or a friend to use a sentence like that.” Of course, the exact wording depends
on the subject of your study. See also the following helpful paragraph from Schütze &
Sprouse (2013:36):

While there is no standard way of wording the instructions for a judgment
experiment, there is general agreement that we want to convey to speakers
that certain aspects of sentences are not of interest to us and should not factor
into their responses. These include violations of prescriptive grammar rules,
the likelihood that the sentence would actually be uttered in real life, and the
truth or plausibility of its content. […] We also want to avoid the question
of the sentence being understandable, since uncontroversially ungrammatical
sentences are often perfectly comprehensible (e. g., What did he wanted?). It
is common to instruct participants to imagine that the sentenecs were being

10Carden (1976:103) even claims: “The linguist’s own intuitions are plainly untrustworthy.” I also like
the way Gibson, Piantadosi & Fedorenko (2013). Their motto is “Expert intuitions are not data” and
view judgments by linguists as being predictors and not data.
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spoken by a friend, and ask whether the sentences would make them sound
like a native speaker of their language.

This is a lot of stuff! In practice, you want to keep your instructions short so it makes
sense to work with bullet points like:

• Please do not judge the content or plausibility of the sentences.

• This study is not about rules you find in a grammar book, but about how language
is actually used in everyday life.

• Imagine the sentences were used by a neighbor or friend of yours. Would you
consider her a native speaker (then the sentence is natural) or does she sound
somehow ‘strange’?

Excursus: More on Phrasing

How your actual instructions will look depends on your task. Some phenom-
ena are easier to rate then others. This is especially true for spoken language
phenomena. I will illustrate this with two phenomena that are very frequent in
spoken German, but only one of them is hard to rate.

There are plenty of so called ‘modal particles’ in German. They seldom
occur in writing, but are very frequent in spoken utterances. However, it is
no problem for participants to rate the acceptability of a modal particle in a
sentence even when the sentence is written. Another phenomenon is a change
in word order: As you may know, (surface) word order in German depends on
the type of clause. German exhibits SVO in main and SOV in subordinate
clauses. The latter word order is, for example, used with subordinate clauses
introduced by the complementizer weil ‘because’. However, in spoken language,
people often use SVO order in this case. People usually are not aware they do
this and will—in many cases—reject a sentence, especially a written sentence,
as being acceptable.

What I want to say is: Think carefully about your topic. Ask some linguis-
tically trained people for judgments. Try a questionnaire with some laymen and
ask them for feedback and look at the results (i. e., run a pilot). Then decide if
you have to change your instructions. You could also think of presenting audio
instead of written stimuli. Or you could consider giving some audio examples
at the beginning of your study.
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13. Procedure

One of the most important things you have to do when running your study is to randomize
the order of presentation of your stimuli (the sentences to be judged). We have already
seen in Section 11 a case of randominazation inside the lists created by using a Latin
square. But why do randomization? This has to be done mainly because of the fact
that the order in which items are presented can influence the way you perceive them (the
most famous of these effects may be the serial position effect: the first and last items on
a list are remembered better than items in the middle). There is also empirical evidence
that order influences acceptability ratings (Greenbaum 1973, 1976; Greenbaum & Quirk
1970).

Additionally, think of what would happen if participants saw five sentences with a
construction they normally would not judge acceptable in a row: Chances are not too
small that they would become accustomed with the construction and perhaps would like
it more when reading the fifth sentence than when reading the first. This is by no means
unlikely and this effect even has a name. It is called mere-exposure effect (Zajonc 1968)
and there is also evidence that repetition of grammatical constructions alters judgments
(e. g., Nagata 1987a, 1987b, 1988). Of course, with randomization you will not get rid of
this effect, but it will become less strong. The mere-exposure effect (also called familiarity
principle) is, by the way, also the reason why you should not test trained linguists. They
might know the phenomenon you’re looking at and may be biased!

There are many more reasons to randomize the order of items. People may pay more
attention in the beginning of the questionnaire and get tired at the end. People may see
patterns in your sentences and be influenced by them (even if the patterns are not really
there).

Additional Important Tips for the Procedure

• You need to know a lot of things about your subjects. This mainly depends on
the purpose of your study, of course, but standard questions are questions about
their gender, about their age, about their native and additional languages that they
speak and whether or not they have language impairments. And always keep the
data protection laws in your country in mind!

• If you want to know something about spoken language it can, in many cases, be
useful to present participants with audio stimuli. They should for reasons of con-
sistency be recorded so every participant hears exactly the same sentence.

• In some cases, especially when you’re doing research on a language or dialect you
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do not speak fluently, it can be of additional value to ask participants to write down
their own versions of the sentences to be judged. The feedback gathered in this way
can give you valuable information for future studies. Additionally, you may want
to have a native speaker check your stimuli!

14. Software tips

• Google Forms: You can easily use Google Forms for collecting responses. Random-
ization is easily possible. Responses are saved in a structured spreadsheet you can
download.

• Ibex and Ibex Farm: Ibex is a software for self-paced reading tasks and (speeded)
acceptability rating studies. Ibex farm provides free hosting so you can run online
studies (http://spellout.net/ibexfarm/).

• WebExp: a system to perform online experiments. It is also suitable to perform
different types of judgment tasks and randomization is, of course, possible.

• MiniJudge: A software for small-scale judgment tasks.

• Amazon Mechanical Turk: To collect large amounts of judgments you can hire
people via Mechanical Turk; of course, you have to pay them (see also Sprouse
2011b and for practical matters also Gibson, Piantadosi & Fedorenko 2011 and the
website http://tedlab.mit.edu/software/).

• PsychoPy: An open source software for psychological experiments written in Python.
I really like PsychoPy a lot because it’s very flexible. You can easily built a ques-
tionnaire with PsychoPy although it’s much more powerful. You can also use Psy-
choPy for online studies (using Pavlovia which is simply a platform for PsychoPy
experiments).

Part III

Analyzing and visualizing your results

15. Analyzing the results

“Do not trust any p value.”

http://spellout.net/ibexfarm/
http://tedlab.mit.edu/software/
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– Cumming 2013:8

15.1 Descriptive statistics and more on Likert scales

The first thing you want to do is to describe your data. A very useful measure to begin
with are mean ratings. As you have already learned, however, it is not possible to calculate
a mean from our values since we used a Likert item task to get our data. The ‘distance’
between the values of a Likert item is not clearly defined and thus we cannot calculate a
mean. This is because what we get from this kind of task are ordinal data.

And now comes the fun part: We can simply ignore this and just calculate the mean.
Stevens’ typology of data is often very useful, especially for didactic reasons. The theory
of measurement, however, is a purely mathematical theory, what we are doing is empirical
research. And empirical research has shown that it is meaningful to calculate a mean out
of Likert items. And even Stevens (1951:26) himself noted:

As a matter of fact, most of the scales used widely and effectively by psy-
chologists are ordinal scales. In the strictest propriety the ordinary statistics
involving means and standard deviations ought not to be used with these
scales […] On the other hand, […] there can be invoked a kind of pragmatic
sanction: in numerous instances it leads to fruitful results.

And this is not only true in this case, but in others as well:

Experience has shown in a wide range of situations that the application of
proscribed statistics to data can yield results that are scientifically meaning-
ful, useful in making decisions, and valuable as a basis for further research.
(Velleman & Wilkinson 1993:68)

In fact, this is not only true for the calculation of means, but for a whole set of statis-
tics that are called parametric tests. Parametric tests are tests with a specific set of
assumptions. Typical applications of parametric tests (like the t-test) involve normally
distributed interval (non-ordinal) data. Thus, our Likert data should not be analyzed
with parametric tests. However, empirical studies, including simulation studies, have
shown repeatedly that parametric tests are so robust against violations of their assump-
tions that they produce meaningful results for ordinal data. Thus, we will use parametric
tests to analyze our data (for more information see, for example, de Winter & Dodou
2010; Norman 2010; Endresen & Janda 2017; see also Pell 2005).
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15.2 Testing for differences

Suppose you want to know if there is a difference in the acceptability of two constructions.
You tested both constructions and received ratings of five sentences per construction by
25 participants, i. e., each participant rated ten sentences. You will get two means (see
Section 16 for details on how to do this). Let’s say, again I’m making numbers up, the
mean of construction A is 3.8 and the mean of construction B is 4.2. The question you
have is if people like construction B better or if the numbers only differ because you drew
a random sample.

You will only (really) understand how a statistical test works if you understand the
question you have. A mean x you calculate is a measure of a parameter µ and not the
parameter itself. It is, given your data, the best guess you have, where the real mean
µ of your underlying probability distribution is. Now you have two means x1 and x2.
The question you have is the following: Are there two probability distributions with two
different µs? Is this the reason you got x1 and x2? The more the two values differ the
more likely this may become, but you don’t know! Another possibility could be that
you have, because chances are actually quite high when drawing a random sample, two
measures of the same parameter µ . If you want to know if there is a statistical difference
between two means, what you really want to know is if they belong to one and the same
distribution or to two different distributions. This is what a statistical test does!

We have calculated two means. This is our statistics (the first step of it). We want
to know something about the population. The question a statistical test like the one we
are interested in now tries to answer is how likely it is that the two means come from
one and the same population. Our two means are x1 and x2. Are they just two measures
for one µ? Or are they two measures for two µs? I have depicted the two possibilities
in Figure 9. On the left you see the possibility where your two means are just estimates
for the same parameter (i. e., x1 and x2 are from the same population). On the right the
other possibility is depicted. Here your two means are two estimates. One for µ1 and one
for µ2 (i. e., x1 and x2 are from two different populations).
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Figure 9: If you have calculated two means, the question arises if there is a statistical
difference between the two groups. To decide if this is the case or not a statistical test
can help. Based on the data you have such a test can help you to decide how likely it
is that the two means x1 and x2 are point measures for one µ (the parameter you don’t
know). The other option would be that x1 and x2 do not differ by chance (because you
took random samples), but actually are measures for two different µs that belong to two
different populations.

There is one very, very important thing you need to understand before we go on,
because what I just told you was very sloppy. I said that a statistical test tries to find
out, if x1 and x2 stem from the same population or not. But a statistical test cannot really
do this as discussed in the introduction. How can the test know the population? It’s just
impossible! What the test does is that it takes your data as an input and calculates a
probability. I will stress this even more later on, but keep in mind that such a test does
not calculate how likely it is that x1 and x2 stem from one population or not. It takes
your data and tells you how likely it is that you will get data like this when there is only
one distribution/when there are two populations.

The null hypothesis, also called H0, we have is µ1 = µ2. So we assume that the
two measures we have are only different because of random sampling and that they really
come from the same underlying distribution. We can use different wordings that all mean
the same:

• H0: µ1 = µ2

• H0: The means we calculated from our samples may be different, but this difference
only came about by chance.

• H0: The means we calculated belong to the same population.

Usually you are interested in showing that your two means are actually different. But in
science we cannot really prove things. What we can do instead, is to disproove things.
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So we can disproove (or try to disproove) our H0. That’s why significance testing is
also called ‘null hypothesis significance testing’ or NHST for short. NHST is a kind of
yes/no game. You want a definite answer. This answer comes about in form of a p-value
(p stands for probability). As this is only a single value and as the world is a really
complex thing that cannot be captured in form of yes/no decisions you always should
report dispersion measures as well (we will see how this is done later). There are many
misconceptions about NHST and about p-values—even among experienced researchers.
As it is very important to understand what a p-value tells you (and what it doesn’t tell
you), I will devote a whole subsection to them.

15.3 Understanding p-values

A p-value is defined as the probability that you will obtain the data you have—or more
extreme data—given that your null hypothesis is true. We can rephrase this as the
probability that, when the null hypothesis is true, your mean differences are as they are
(or of greater magnitude than the results you actually got). This doesn’t sound very
exciting, of course. But compare this definition to the following, wrong definition (I
crossed it out as it is wrong): The p-value is the probability that the null hypothesis is
true given your data. This sounds very similar, but it is nonsense! Think why: We really,
really want to know the probability of the null hypothesis being true (or false). But that’s
a thing we will never ever be able to find out! We just cannot see the populations! And
actually, the probability of something to be true is either 1 or 0. It’s either true or false.
There is nothing in between.

The only thing we can look at is our data. What we can calculate from our data is
the probability of obtaining the results we obtained (or even more extreme results) given
that H0 is true. So what NHST does is to assume that H0 is true. This means in our
case, that we assume that our measures are estimators of the same population (µ1 = µ2).

What researchers usually want is a p-value as small as possible. The smaller the
p-value is, the higher is the probability that we obtained the observed results given that
H0 is true. But when is a p-value small enough? There is no definite answer to this
question and there are different traditions of setting a threshold:

• p < 0.05, often tagged with a star: *

• p < 0.01, often tagged with two stars: **

• p < 0.001, often tagged with three stars: ***
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The significance level indicates the probability of an observed event to occur given that
the null hypothesis is true. This means that a significance level (also called: alpha level/α
level) of 0.05 says that the probability of obtaining the observed results given that H0 is
true is 5%. An α of 0.05 is very common. In practical terms this means that you obtain
two means x̄1 and x̄2 and you do a statistical test that gives you a p-value. If you have
set your alpha level at 0.05 then you would reject N0 when the test gives you a p-value
that is smaller than 0.05. Then you say that you have a statistically significant result and
that it seems to be the case that your values are estimates of two different populations.11

As you reject your null hypothesis, you accept your alternative hypothesis, namely, that
there is a difference between your conditions (i. e., your constructs).

This kind of a yes/no decision that is based on alpha levels is called ‘Fisher’s disjunc-
tion’ named after the famous statistician Ronald Aylmer Fisher. In fact, many modern
statistical methods go back to Fisher. In Fisher’s view, a small p-value meant that “ei-
ther an exceptionally rare chance has occurred, or the theory [your null hypothesis] is
not true” (Fisher 1959:39). Note that Fisher never actually made a statement about how
to generally interpret a p-value or to set your alpha level at 0.05. But let’s look at an
example before we go on:

Suppose we want to know if a newly developed medication is better than an old one
(or if one grammatical construction is accepted more than another one; drugs are simply
more illustrative). Suppose additionally, that the new drug in fact is not better than the
old one. However, in reality we do not know this. You want to be sure that the new drug
really is better before you start advertising it so you hire 20 different research groups
that are supposed to compare the new medication to the conventional one. All teams do
exactly the same comparison.

If you set an alpha level of 0.05 one team should (on average) reject the null hypothesis
and come to the conclusion that one drug is better than the other. The other 19 teams
would rightly come to the conclusion that there is no difference, because they obtained a
p-value greater than 0.05 when comparing the results between the two groups (old drug
vs. new drug). This is because in 5% of the cases, i. e., in 1 out of 20 cases, you would
wrongly reject H0 and therefore accept H1 with α ≤ 0.05. Note that we can only say this
if we set our alpha level before we started the study! This means that you should always
set your alpha level at the beginning of your study. There are many more things to say.
For example, you should always be aware of the fact that, in many cases, you should do
several studies to see if your results are just one case out of 20. Or that a very, very small

11Always try to use a clear language. You do not speak of proving something, because this is something
science cannot do. You always obtain probabilities, so you do not write that there actually are two
different populations, you still don’t know!
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p-value is not better than 0.049 in this case. But the main point of the next subsection
will be: Why not just set the alpha level at 0.0000000001 or even smaller?

Excursus: The Neyman-Pearson Tradition

Many statistical methods are based on the work of R. A. Fisher, as I already
said. While most statistics textbooks will tell you that you specify a null and
an alternative hypothesis, Fisher’s system only used one hypothesis:

Under Fisher Hypothesis Testing (FHT), there is only one hypoth-
esis under consideration: the theoretically uninteresting hypothesis
called null hypothesis [abbreviated H0], which for syntax is very of-
ten the claim that there is no difference in acceptability between two
(or more) sentence types. Statistical tests in FHT assume that H0 is
true, and return the probability of obtaining the observed experimen-
tal result, or a result that is more extreme, under this assumption.
(Sprouse & Almeida 2017:4)

In Fisher’s view, there are three possibilities to interpret a p-value. Either your
p-value is very small, and there should be an effect (he considered a p-value
smaller than 0.01 as significant), or you obtain a p-value that is between 0.01 and
0.10. Then, in general, more experimentation is needed. The third possibility is
that the value is greater than 0.10. Then the chances are really high that there
is no effect. That means that Fisher’s idea of significance testing was not to
get a yes/no answer, but rather to get a measure of how strong the evidence for
an effect is. In other words: Fisher’s idea was that the smaller the p-value, the
stronger the effect.

There is, however, not only one tradition of interpreting p-values, but several.
A very influential one is called Neyman-Pearson tradition. It goes back to Jerzy
Neyman and Egmont Pearson who also coined the terms ‘null hypothesis’ and
‘alternative hypothesis’ and who are the founders of the idea of errors types (see
the next subsection). They defended the idea of setting the significance level in
advance (i. e., before running an experiment). In their view, p-values only work
in the long run. This means that one experiment is simply not enough: You
first set your significance level, let’s say 0.05. This means that when your result
in the end is p < 0.05 and there really is an effect, you will miss this effect in
only 5% of the cases. In their view, smaller p-values are not stronger evidence.
People following this tradition usually do not report exact p-values, but just
state something like “We obtained p < 0.05”.
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There is still a big debate about the interpretation of p-values. And although
you usually will get very clear results in grammaticality judgments (we talk about
this later), you should be aware of the dangers of misinterpreting p-values. I
recommend interpreting smaller p-values not as stronger evidence for an effect
(i. e. I recommend following the Neyman-Pearson tradition). Nevertheless, it
can be useful for your readers to report exact p-values. Following the Neyman-
Pearson tradition also means that a large p-value is not evidence that there is
no effect. It means that more experimentation is needed.

15.4 Type I and type II errors

There are two types of errors you can make when doing NHST. I will illustrate these
errors by means of a story that you might have heard before: There once was a boy
that often made fun of the people who lived in his village. To do this, he shouted: “The
wolf is coming!,’’ so people would get afraid and would hide in their homes even though
there actually was no wolf coming. Of course, at some point people stopped believing the
boy’s warnings and stopped hiding as they realized that there was no wolf. On one day,
however, the wolf really did come into the village and the boy saw him. He ran through
the streets and shouted: “The wolf is coming! The wolf is coming!,’’ but nobody believed
him.

At the beginning, people believed that there was a wolf, but in fact there was no wolf.
Then, people believed there was no wolf, but in fact there was a wolf. These are the two
errors of statistics: Believing that there is an effect where in fact there is no effect (type I
error) and believing that there is no effect where in fact there is an effect (type II error).
A type I error means to reject H0 when it is actually true. A type II error means to
accept H0 when it is actually false.

Type I errors are also called α errors (alpha errors). The type I error rate is the
probability of rejecting H0 when it is true. This probability is assigned the Greek letter
α (also called the significance level). You can set α in advance. If you set your alpha level
at 0.05 the probability of committing a type I error is at 5% (remember the 20 research
teams and the new drug). If we call this probability α , the probability of committing
a type II error is 1−α . If we call the probability of committing a type II error β ,
then the probability of correctly rejecting the wrong H0 is 1− β . Type I and type II
errors correlate: the smaller the probability of committing a type I error, the higher the
probability of committing a type II error. So it does not make sense to set your alpha
level very small to prevent type I errors, because then the chance of committing a type
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II error will be really high.

Taken together, there are four possibilities. H0 may be true, but given your data you
reject it (type I error). H0 may be true and you accept it (perfectly fine). H0 may be
false and you reject it (perfectly fine). Or, H0 may be false, but you accept it (type II
error).12 I have summarized this in the following table.

H0 is (in reality)
true false

Decision about H0 reject type I error (α) D (1−β )
given the data accept D (1−α) type II error (β )

One important thing in doing empirical research is the question of how many participants
you need. The probability of falsely detecting an effect that is not there is α . The
probability of falsely missing an effect that is not there is β . These values depend on
each other. If we set our significance level (alpha level) really low, β will get bigger, so
the chances that we miss an actual effect rise. At the same time, something different
changes, namely the value of 1−β . This is the probability of correctly rejecting a false
H0. This value, namely 1−β has its own name: power. The power of a test is therefore
the probability that the test correctly rejects the null hypothesis.

Suppose that a new drug is developed and that the new drug actually is better than
the old one that you usually get for some disease. However, the drug is only slightly
better. The measure of the size of an effect is called ‘effect size’ in statistics. If the effect
is really small, it will be hard to detect. What you will need is more participants. But how
many? The question is how much power does your experiment need. This is something
you want to know before you do a study! And to determine your power you need to
know which kind of statistical test you want to carry out. Actually, the calculation of
the power of a test is so complicated that you will need a special software. You can, for
example, use the free tool G*Power (Faul et al. 2007).

However, there is good news for you! Although in many empirical studies, power
is far too low (meaning that the chances are high that they miss an actual effect) (see
Cohen 1962; Sedlmaier & Gigerenzer 1989), this is usually not a problem of acceptability
judgment studies! At least, if the phenomenon you’re looking for is not too subtle. In the
next section I will discuss statistical power and the question of how many participants
you will need in more detail.

12Actually, it would be a little bit more correct to say ‘fail to reject’ instead of ‘accept’.
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Before we come to that, it should be noted that power depends on several factors. It
depends on the size of the effect as larger effects are easier to detect than smaller ones.
It depends on the false positive rate. It depends on the nature of the task. It depends on
the statistical test you want to conduct. It depends on how many responses you collect
per participant and, crucially, it depends on your sample size: The more participants you
have, the higher your power will be.

15.5 How many participants do I need to consult?

While the probability of rejecting the null hypothesis when it is actually true is easy to
handle as it is set in advance (usually, α = 0.05), the probability of rejecting the null
hypothesis when it is actually false, i. e., statistical power, is often overlooked. Of course,
the probability of finding an effect does not only depend on your statistics or your research
design, but one crucial factor is how big the effect is. A huge effect is easier to detect
than a very small effect. How big an effect is is measured by ‘effect sizes’. There is no
magic behind effect sizes. An effect size simply is a measure of how big an effect is. For
example, the difference between two means is an effect size (the only important point is
that p-values are not effect sizes, i. e., a small p-value does not mean that there is a big
effect).

There are also standardized effect sizes. A good example of a standardized effect size
is ‘Cohen’s d’ that is used for differences between means.13 As you already know, two
different means can signify that they come from two different populations. Take a look
back at Figure 9 on the right. The bigger the difference between your means, the less
overlap there will be between your populations (if there really are two populations). This
overlap depends, of course, on the form of the distributions. The form of a distribution
can be described mathematically with the standard deviation. This means, that our
standardized effect size needs to take the standard deviation into account. That’s exactly
what Cohen’s d does.14 I don’t wanna go into the details, but rather just present how to
interpret Cohen’s d by rule of thumb.

Cohen’s d is a number that can be small, medium, or large. A Cohen’s d of 0.2 is
generally considered small, a Cohen’s d of 0.5 is considered a medium effect, and a Cohen’s
d larger than 0.8 is considered to be a large effect. In a famous article Cohen (1962)
analyzed 70 psychological studies and found that the probability of finding medium-sized

13Actually, there is some discussion if it is appropriate to use Cohen’s d for repeated measures designs,
but there seems to be no conclusion yet.

14You may have noticed that this means that the standard deviations of your two groups should be
similar. Actually, your samples should additionally have the same sizes. If these requirements are not
met you should use a measure that is called Glass’ delta.
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effects was only 0.48. For small-sized effects the statistical power was only 0.18. Only
for large effects was this probability 0.83. Cohen’s results were later replicated for more
studies (Sedlmeier & Gigerenzer 1989; Maxwell 2004). On the whole it seems that the
power of most studies is far too low and that the chance of finding an effect that is really
there is actually only 50/50.

A simple way out of this dilemma is to use more participants as power increases
with more data. More participants, however, means more work and more costs. What
you want to know is how many participants you will need. In other words: You should
calculate how many participants you will need for your study in advance. For this, you
need to specify the statistical tests you want to carry out. Power calculation is very
complex, but fortunately, there is free computer software out there that will help you.

And there is even more good news for you! The first thing is that the statistical tests
carried out in grammaticality judgments are fairly easy, so power calculation is not a
big deal. The second point is that effect sizes in grammaticality judgments are usually
large. So you do not need hundreds of participants—at least when the contrasts you
study are not too fine-grained. The third and last point is that there is a study that
already compared different effect sizes in grammaticality judgments.

Sprouse & Almeida (2012; 2017) tested many different phenomena with effect sizes
ranging between a Cohen’s d from 0.15 to 1.96 with four different tasks (magnitude
estimation, Likert scale, yes-no, and force choice tasks). Their results help us to estimate
the number of participants needed for our purpose. I will just present a rough picture
here, but note that you will, in many cases, need to calculate how many participants you
need (not only for grammaticality judgments, but for every empirical study). See below
for more details and software recommendations.

By rule of thumb you want to reach at least 80% power (Cohen 1988). An empirical
study with 80% power has an 80% probability of detecting an effect when the effect
actually exists. Sprouse & Almeida showed that the lowest number of participants is
needed for force-choice tasks to achieve 80% power and that there is a strong power
disadvantage for yes-no tasks. This means that if you want to know something about
very fine-grained differences between constructions, i. e. phenomena with small effect
sizes, you would like to use a force-choice task. Sprouse & Almeida (2017:13-14) describe
the force-choice task they used as follows:

In the (two-alternative) force-choice task (FC), target sentences are presented
in vertically arranged pairs, with each sentence in the pair followed by a single
radio button. Participants are asked to indicate which of the two sentences is
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more acceptable by selecting the radio button next to that sentence. In the
current FC experiment, the pairs were lexically matched as to form minimal
pairs that varied only by the syntactic property of interest.

As most phenomena in syntax have medium or large effect sizes, I won’t go into the
details of force-choice tasks in this tutorial, but stick with Likert-scale tasks.

One question you may ask is how would you know if the phenomenon you want
to look at has a small, medium, or large effect size. For previously studied phenom-
ena you can simply calculate a Cohen’s d by using the means and standard devia-
tions. I recommend reading the paper by Anderson, Kelley & Maxwell (2017) and using
G*Power (Faul et al. 2007) and the web-based apps that can be found at https:
//designexperiments.com/shiny-r-web-apps.

If there are no previous study on the phenomenon of interest, and this may be the
the case, it is a good idea to take a look at Sprouse & Almeida (2012; 2017):

For studies that do not have published means and standard deviations, or for
planning a new study where the means and standard deviations are unknown,
the situation is a bit more complicated. One possible approach would be to
informally compare the phenomena with unknown effect sizes to the known
phenomena in this study[…]. Although this method is not precise, it should
be possible to arrive at a relatively accurate, albeit coarse, effect size (i. e.,
small, medium, large, very large) […]. (Sprouse & Almeida 2012:28-29)

Figure 10 adapted from Sprouse & Almeira (2012:26) shows how much power you get
when using Likert item tasks with different sample sizes. As you can see from the Figure,
you will need approximately 37 participants when you have a medium sized effect. The
graph also shows that Likert item tasks are not suitable for small effect sizes.

https://designexperiments.com/shiny-r-web-apps
https://designexperiments.com/shiny-r-web-apps
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Figure 10: Sample size needed to achieve different percentages of power when using Liker
item task in acceptability judgments. Adapted from Sprouse & Almeida (2012:26).

15.6 Back to our statistical test

Let’s come back to our statistical test. We have two constructs, a lot of data, and two
means. We still ask ourselves if those two means come from the same population or not.
You want to run a test, get a p-value, and—based on that p-value—you want to see if
you should reject H0. Although I said that your H0 usually is µ1 = µ2, in many cases
you have a clear expectation about the outcome of a test. For example, in most cases,
you will have an expectation as to which grammatical construction should be worse than
another. However, in some cases, you just assume that there will be a difference between
the two groups/conditions, but you don’t know if one construction will get better ratings,
i. e., you assume a difference, but you don’t know the direction of this difference.

There are two types of statistical tests: one-sided and two-sided tests (also called
one-tailed and two-tailed tests). The choice, however, is simple. If you assume that one
construction will be better than the other, you choose a one-sided test, if you don’t know,
you choose a two-sided test. This decision is made before you take a look at your data,
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of course! Note that one-sided tests are more powerful, i. e., while a two-sided test may
not show a significant result, a one-sided test may do so using the same data. Only use
one-sided tests when you have a reason to do so!

There are more decisions to make before you can choose the right test besides setting
your alpha-value (usually 0.05) and specifying if you want a one-sided or two-sided test.
One important point is to figure out if you are dealing with paired or unpaired (i. e.,
independent) data sets. Data is said to be paired if there are two values that belong
together. As we have tested two constructions by asking the same participants we are
dealing with paired data. Each participant has given the same amount of ratings for the
first construction as for the second construction.

To compare the results you obtained you can do a t-test. To be more precise, you can
run a paired t-test, let’s say a two-tailed test as you have no clue if construction A will
receive higher ratings than construction B. Note that paired tests are also called tests for
dependent samples. This should not confuse you. It’s just two names for the same thing.
The input of your test will be two lists. For every participant you calculate the mean of
all judgments of the sentences representing construction A and a mean of all judgments
of the sentences of construction B. With this, you receive a list of two means.

Excursus: Should I standardize my data?

Some authors claim that it is useful to normalize the raw data you received by
your participants by z-score transforming them. This is done as it is sometimes
assumed that not all participants make use of the full range of the Likert items
response range (e. g., from 1 to 7). No worries! This is not a complicated thing
to understand or to do! Standardization simply means that you transform the
data from each participant so that it gets the shape of a normal distribution
with a mean equal to 0 and a standard deviation equal to 1. Thus, you receive
negative and positive values around a mean of 0. Your computer can do that
for you. Schütze & Sprouse (2013:43) describe the procedure:

[E]ach participant’s responses are transformed using the z-score
trans f ormation to eliminate some of the potential scale bias […].
The z-score transformation allows us to express each participant’s
responses on a standardized scale. It is calculated as follows: For
a given participant P, calculate the mean and standard deviation
of all of P’s judgments. Next, subtract each of P’s judgments from
the mean. Finally, divide each of these differences by P’s standard
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deviation.

If you read papers reporting acceptability ratings you will see that some authors
transform their data and others do not. While I think that it does no harm to
your data (or results) I’m a little bit undecided if you should transform your
data without a good reason. In part II of the tutorial we will see cases in which
z-transforming your data is helpful.

A short comment before you proceed: You can also fit a mixed model for the analysis of
your data. However, a t-test is just fine for simple comparisons. If you are interested in
mixed models, take a look at the second part of this tutorial here: www.fabianbross.
de/mixedmodels.pdf.

16. Do your statistics in different environments: OpenOffice, R/RStudio, JASP

In this section, I will briefly go through a simple fictional example using three different
software tools—all of them are free of charge and can be used on virtually all platforms
(Linux, Windows, Mac). I will show you how to do a t-test and do some basic plots
in OpenOffice, with R and in JASP. To get the best overview on what is happening, I
strongly suggest you to read all three subsections to follow—also because there is more
information in the subsections than a pure description of the software.

16.1 OpenOffice

The first thing we need is some data. Again, for reasons of simplicity, I assume that
we want to look at two different constructions A and B. For each construction each
participant judged 4 sentences. Thus, we have a total of 8 ratings per participant. We
got data from 10 participants (for a real study you would need more data, of course).
I created an OpenOffice sheet with the judgments the participants gave. This sheet is
shown in Figure 11. Note that I simplify matters a lot here. With real data the sheet
would look different as by using a Latin square not all participants rated the exact same
sentences.

www.fabianbross.de/mixedmodels.pdf
www.fabianbross.de/mixedmodels.pdf
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Figure 11: 10 participants rated 8 sentences

It is obvious, that construction A received an extremely high rating (natural) and con-
struction B an extremely low rating (unnatural). Let’s nevertheless visualize and analyze
the data. The first thing we want is the mean rating for each participant. In OpenOffice,
the mean is calculated by a function called “AVERAGE” (the terms ‘mean’ and ‘average’
are synonyms). You just write “=AVERAGE()” into the field you want to have your
mean value show up in and you can select the cells you want to have your mean from. In
Figure 12 I calculated the mean of the ratings participant 1 gave to the sentences making
up the scale for construction A. This is labeled ‘step 1’ in the figure. In step 2 I expanded
the mean cell to all the other participants’ rating of construction A and in step 3 you can
see that I did the exact same thing for construction B (don’t be confused by the commas;
I’m from Germany, we use commas instead of dots as separators—this doesn’t matter).

Figure 12: Calculate the means.

What we want now is the mean ratings of the constructions in general. So we calculate the
mean of the means. This is shown in Figure 13. As you can see in the figure, construction
A was rated to be 6.025 and construction be was rated to be 1.925. These values tell us
that, indeed, construction A was rated to be well-formed and construction B was rated
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to be ill-formed.

Figure 13: Mean ratings of the constructions.

However, two means tell us nothing about how the data is distributed. First, we want
to know the standard deviation. We get the standard deviation by using the STDEV
function. So you type in “=STDEV()” and select the cells from which you want to
calculate the standard deviation. This is shown in Figure 14.

Figure 14: Calculating the standard deviation.

As we are math pros now, we also want to calculate the 95%-confidence intervals (CIs). To
calculate the CIs, we need three pieces of information: what kind of confidence interval we
want to calculate (a 95%-confidence interval; this is expressed via the alpha level which
is 0.05 then), the standard deviation (we already have that) and the number of data
points we have (this number is 10 as we have 10 values). The CONFIDENCE function
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thus needs three arguments and looks like this: “=CONFIDENCE(α ; SD; size)”. Stare
at Figure 15 for a moment to see what I did.

Figure 15: Confidence intervals.

Now we are able to visualize the results. We make a little plot by selecting our mean
values and by clicking “Insert” → “Chart”. This looks like step 1 in Figure 16. By clicking
“XY (Scatter)” you will get a simple plot as shown in step 2. Note that you want to
adjust the legend later.
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Figure 16: Make a simple plot.

The next step is to indicate the confidence intervals by adding error bars. To do this,
double click your plot. Then click on Insert → Y Error Bars as shown in step 1 in Figure
17. Now check the box “Same value for both” and click on “Cell range”. You can now
select the two 95%-CI values we calulated (both of them) by clicking on “Positive (+/−)”.
See Figure 17. Note that error bars you see in publications do not always represent the
95%-confidence intervals. Sometimes they show the standard deviation, the standard
error of the mean, or whatnot. This means for you, that you have to say that the error
bars show the 95%-confidence intervals of the mean. You can specify this in your captions.
If you do not do this nobody can interpret your plot.
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Figure 17: Adding error bars.

The figure we just created may not look 100% professional, but it is already very informa-
tive! Before we apply a t-test we briefly look at two more examples. First, look at Figure
18. I changed the ratings participants gave to the sentences representing construction A
(but left construction B as is). I added some variation. As you can see, the result is that
the standard deviation got bigger as well as the confidence interval.
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Figure 18: More variation in construction A.

Now look at figure 19. I now added more variation to the judgments of the sentences for
construction B. The two means are now very close together (4.575 versus 4). Again, the
SD and the 95%-CI got bigger, too.

Figure 19: More variation in construction A and B.

Finally, let’s apply a t-test to compare the ratings the two constructions received. We will
do this for all three examples. I have summarized the three examples in Figure 20. The
means in example 1 are very far away from each other and the length of the error bars is
very short. In example two, the means are also rather far away from each other but one
confidence interval is a little bit bigger. In the last example, the means are rather close



Acceptability Ratings and Grammaticality Judgments 67

together. Although we might say “Hey! There is nearly no difference!” we still need a
statistical test producing numbers we can rely on.

Figure 20: Our three examples.

Let’s apply the t-test. We do this by using the TTEST function. This function has
the following syntax: “TTEST(data1; data2; mode; type)”. Of course, “data 1” and
“data 2” are our mean ratings. With “mode” you can choose between a one-tailed and a
two-tailed test. Just type 1 for one-tailed and 2 for two-tailed. We made no predictions
about differences between our constructions so we choose a two-tailed test. Finally,
we need to specify “type”. We choose 1 which stands for paired data. I did this as
shown in Figure 21. As you can see, we get the value 2.80623010563253E-009. This is
our p-value. The E just says that there are nine zeros before our number. Thus we
calculated a p-value of 0.00000000280623010563253. This value is smaller than 0.05 and
our result is statistically significant. Of course, we expected that as the means are very
far away from each other. It is very unfortunate that you do not have many options
doing a t-test in OpenOffice. Meaning that you do not get much information about the
statistics, except a p-value. You can also calculate a t-test online. A trustworthy website
is www.socscistatistics.com. Here you also can specify the alpha level and get
more numbers that you may need for reporting your statistics.

Figure 21: Calculating a p-value.

www.socscistatistics.com
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For example 2 we get a p-value of 0.00000682979925227733 (6.82979925227733E-006) and
for example 3 a p-value of 0.1270640781. This is also what we expected. In example 2
the means were still very far away from each other, so we get a statistically significant
p-value. In example 3, the means are close together and the result is not significant with
p being greater than 0.05. However, the fact that two means are close together tells you
nothing. There still could be a significant difference! The reason for this is that the
means are point measures and they tell you nothing about the spread of the data.

The 95%-confidence intervals, i. e., the error bars, however, may help you to interpret
the results by rule of thumb. If the error bars do not overlap, chances are high that there
is a very low p-value and a significant difference. If they overlap a little, p is often below
0.05 and if they overlap more, p might be high. However, you do not know for sure and
have to make a test in any case, but there is a correlation between p-values and confidence
intervals (if you want to know more about this, take a look at Cumming & Finch 2005
for a great overview on visual interpretation of error bars in different circumstances).

16.2 R and RStudio

R is a programming language as well as a software for statistical purposes. It’s very
powerful and free to use. Some people are scared of R, but I really recommend using
it! Additionally, you may use RStudio which is an integrated development environment
(IDE). This simply means that RStudio is a software with some extras you can use R in.
You can think of R as a programming language and of RStudio as your user interface. In
the following, I will go through example 1 from the previous subsection. However, I will
simplify matters in a way and assume that you have already calculated the means of the
sentences representing the two constructions for each participants.

The first thing we need is to load these means into R. Under normal circumstances I
would assume that you have your data in some table. R prefers .csv files. CSV stands for
‘comma-separated values’ and is a very simple file format to store tables. With RStudio
you can easily import .csv files with the “Import Dataset” function. Here, we will simply
tell R our numbers by hand. First, you need to install R and RStudio, of course (you’ll
find out how!). Then we open a new file. We now create two lists. One list with the
mean ratings for construction A and one list for the mean ratings of construction B. This
is achieved by the “c function”. This function simply combines values into a list:

A <− c(6.5, 6.25, 6, 5.75, 5.75, 5.75, 6.25, 6.5, 5.25, 6.25)
B <− c(1.25, 2, 2.25, 2.25, 2.25, 1.5, 2.25, 2, 1.75, 1.75)
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The code above creates two variables, A and B. We now have two lists, a list called ‘A’
containing the mean ratings for construction A and a list called ‘B’ for the mean ratings
for construction B. The little arrow simply is an assignment operator: It tells R that I
want to give the list a name.

If you type in the code above into your file in RStudio you first need to compile it.
This is done by selecting the code and hitting ctrl + (alternatively, you can click on
“code” in the menu bar on the top of your screen and then choose “Run selected line(s)”).
Figure 22 shows what happens in RStudio when you do this.

Figure 22: Creating two lists in RStudio.

As you can see from the figure, I wrote my code in the window in the upper left corner.
When compiling the code you see the results in the window at the bottom on the left.
For now, we will ignore the other two windows on the right. Now we calculate the means
of the means and assign each of them a variable. I will call the variables “meanA” and
“meanB”:

meanA <− mean(A)
meanB <− mean(B)

To see the results, you just type in “meanA” and “meanB” and compile the results by
selecting “meanA” and “meanB” with the cursor and hitting ctrl + . The result will
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look like this:

Figure 23: Calculating the means.

We can calculate the standard deviation in a similar way by using the sd function:

sdA <− sd(A)
sdB <− sd(B)

In the OpenOffice example, we calculated the 95%-confidence interval. We want to do
this in R too. First, we need a better format of our data. We will build a data frame. To
do this, we first concatenate our two lists into one:

numbers <− c(A, B)

The result is simply a list of all our values. We named this list “numbers”. The first
ten values in this new list are the means of construction A and the other ten values are
the means of construction B. Now we want a new column which contains exactly this
information. We can do this by creating another list:
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conditions <− c("contructionA", "contructionA", "contructionA",
"contructionA", "contructionA", "contructionA",
"contructionA", "contructionA", "contructionA",
"contructionA", "contructionB", "contructionB",
"contructionB", "contructionB", "contructionB",
"contructionB", "contructionB","contructionB",
"contructionB", "contructionB")

A more simple way to write this would be to use the rep functions which repeats the
things you want as often as you want:

conditions <− c(rep("contructionA", 10), rep("contructionB",
10))

The code above does exactly the same thing: It creates a list called “conditions” which
contains ten times the word “contructionA” and ten times the word “contructionB”. Now
we create a data frame, i. e., a table. The first column in this table contains our mean
values and the second column our means. We call this data frame “df”.

df <− data.frame(numbers, conditions)

The result will look like this:
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Figure 24: Our first data frame.

Our two columns have names, as you can see. The first column is named “numbers” and
the second one “conditions”. In many cases you may want a third column specifying which
value comes from which participant. This is often needed because we have two values
from each subject. The first and the eleventh value in our first column, for example,
belong together. This is an important piece of information that is missing in our table.
This information is important for the statistics as we are dealing with a repeated measures
design (which produces paired data). Although we do not need this right now, we will
give each participant a number. As there are ten participants we need numbers from 1
to 10. We need this twice. Either you write:

participants <− c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10)

Or you keep it short:

participants <− c(1:10, 1:10)

I think it’s obvious what the code above does: It concatenates the numbers from 1 to 10
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twice. Now, we create a new column:

df <− data.frame(numbers, conditions, participants)

The result looks like in Figure 25:

Figure 25: Our second data frame.

We will now use a function called “summarySE”. To use the function, we need an addi-
tional package that you need to install. After we have installed the package we need to
tell R that we want to use it. We do this with the following code (notice that there are
quotation marks in the first command but not in the second):

install.packages("Rmisc")
library(Rmisc)

We are now ready to get our confidence intervals. Let’s first look at how we get them
and then talk about what we did:

summarySE(data=df, measurevar="numbers",
groupvars="conditions", conf.interval=.95)
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The summarySE function needs the following information: First, it needs to know with
which table we are working (it’s “df”). Then it needs to know our measurement (“mea-
surevar=''numbers''”). Then we specify our conditions (“withinvars=''conditions''”). Fi-
nally, we specify the confidence level (“conf.interval=.95”). The results are pretty useful.
We get the mean, the standard deviation, the standard error, and the confidence intervals:

Figure 26: The summarySE function.

Actually, to make a nice plot of our data it is useful to give our summarySE function a
name. Let’s call it “useful”:

useful <− summarySE(data=df, measurevar="numbers",
groupvars="conditions", conf.interval=.95)

To plot this, we will need a package called “ggplot2”. Again, we install the package and
tell R to use it:

install.packages("ggplot2")
library(ggplot2)

We can now use a function called “ggplot”. It wants to know the data frame we are
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working with (it’s “df” again) and which column contains the values for the x-axis and
which column contains the values for the y-axis. Then we tell R that the error bars will
be our confidence intervals. Additionally, we can specify the size and shape of the plot
and the limits of the axis:

ggplot(useful, aes(x=conditions, y=numbers, group=1)) +
geom_errorbar(width=.1, aes(ymin=numbers−ci, ymax=numbers+ci))

+
geom_point(shape=21, size=3, fill="white") +
ylim(1,7)

I won’t go into the details of what this code does. Play around with it! The resulting
plot looks pretty good (you can export it in different sizes and formats by clicking on
“export” right above the plot):

Figure 27: A plot with ggplot.

You can start playing around with ggplot. For example, you could also make a bar plot:

ggplot(data=useful, aes(x=conditions, y=numbers)) +
geom_bar(stat="identity", position=position_dodge(),

fill="steelblue")+
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geom_errorbar(width=.1, aes(ymin=numbers−ci, ymax=numbers+ci))
+

coord_cartesian(ylim = c(1,7)) +
theme_minimal()

This will produce the following output:

Figure 28: A bar plot with ggplot.

Now, we perform a t-test. To do a paired t-test we type in:

t.test(A,B,paired=TRUE)

The results will look like this:

Paired t−test

data: A and B
t = 22.8405, df = 9, p−value = 2.806e−09
alternative hypothesis: true difference in means is not equal

to 0
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95 percent confidence interval:
3.69393 4.50607
sample estimates:
mean of the differences

4.1

As you can see, R tells you several things. First, it reminds you, what you did (a paired
t-test) and what the input data was, namely the lists A and B. Then it tells you the
statistics. Again, we get a p-value of 2.806e-09 as we did with OpenOffice. As you see,
you also got the 95%-CIs as well as the difference between the two means.

The test we just ran was a two-sided t-test. If you want to run a one-sided test you
can do this by specifying if you expect the difference to be bigger or smaller. So you
either use

t.test(A,B,paired=TRUE,alternative="greater")

or

t.test(A,B,paired=TRUE,alternative="less")

That’s all! R is a great tool! It just requires some work. The most useful tip is: Google
is your friend! And: If you use R or some packages make sure to cite them properly.

16.3 JASP

While R is a programming language, JASP is a computer program with a graphical
user interface. It was developed by the JASP Team at the Department of Psychological
Methods at the University of Amsterdam and is free to use. You can download it at
https://jasp-stats.org.

Before we take a look at JASP, we need some data. Again, I will use example 1. I
created a simple table that looks like the one in Figure 29. I saved the table in the .csv
format.

https://jasp-stats.org
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Figure 29: A simple table.

Now you can open JASP and open this table. This will look like in Figure 30.

Figure 30: Open the table in JASP.

The use of JASP is pretty straight forward! Above the table you can see different things
you can do. If you click on “Descriptives” you will see the names of the two columns
“MEAN A” and “MEAN B”. If you select them and click on the arrow they will appear
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in the small white window that says “Variables”. On the right you will immediately see
some interesting information like the mean or the standard deviation in a table. The
cool thing is that you can copy the code of this table and paste it either into Word,
OpenOffice, or LaTeX (under “Copy special” you’ll find the LaTeX code). I copied the
LaTeX code and it looks like this:

Table 1: Descriptive Statistics
MEAN A MEAN B

Valid 10 10
Missing 0 0
Mean 6.025 1.925
Std. Deviation 0.3988 0.3545
Minimum 5.250 1.250
Maximum 6.500 2.250

That’s not bad! If you click on “Plots” below the variables you can select a plot you like
and it will appear immediately in the window on the right. You can easily save the plots
in the PNG, PDF, EPS, or TIFF format.

Now, let’s do a t-test. To do this, simply click on the “T-Test” button and choose
“Paired Samples T-Test” from the drop-down menu. Again, select “MEAN A” and
“MEAN B” and press the button with the arrow. There are a number of settings you
can change. You can leave everything as it is, but an interesting feature is “Descriptive
plots” which generates a plot with 95%-confidence intervals. Again, the results of the
test occur in the window on the right. The table looks like this:

Table 2: Paired Samples T-Test
t df p

MEAN A - MEAN B 22.84 9 < .001

The results look like in Figure 31. Unfortunately, JASP does not give you an exact
p-value. However, That p is smaller than 0.001 might be enough information for many
journals.
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Figure 31: A t-test in JASP.

If you use JASP, make sure that you cite the software.

17. Multiple comparisons

So far, we have looked at very, very simple cases and only compared two constructions.
Depending on your design it may well be that you want to compare more than just one
construction. However, there is a problem called ‘alpha inflation’. We already know that
with the alpha-level set to 0.05 we have a 5% chance to get a statistically significant
result although there is no effect (type I error). In other words: Suppose there is no
effect and we sample from a population 20 times and do a t-test with an alpha-level of
0.05, we will get (statistically) one significant result just due to chance. If you do multiple
comparisons, the chances to conduct a type I error increases. With each additional test
you do, the chances increase. With 20 comparisons, the chance to observe a significant
result is already 64%! Of course, that’s very bad! So what to do?

The answer to this question is actually a very tough one and depends on your philos-
ophy. Let’s start the discussion with noticing that there can be two different reasons for
conducting multiple comparisons. The first reason would be that you are interested in
comparing different conditions (or: constructions) because you have several hypotheses
in mind. The second reason could be that you tested a lot of different conditions (or:
constructions) and now you just want to look if there are some differences (and compare
everything with everything). This is also called ‘fishing for effects’.
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If the first type of situation applies to you, many statisticians would recommend not
to worry about alpha-inflation and just carry out your tests. That there is a chance of
making a type I error does not only apply to your tests, but to tests in general. Thus, if
you conduct another study the problem of type I errors will be there again. The same is
true if another researcher tries to replicate your study. In this case, the researcher will
not correct the alpha level.

Again, let’s make ourselves clear what is happening when you conduct multiple com-
parisons. Feise (2002) summarizes this nicely:

If a null hypothesis is true, a significant difference may still be observed by
chance. Rarely can you have absolute proof as to which of the two hypothe-
ses (null or alternative) is true, because you are only looking at a sample,
not the whole population. Thus, you must estimate the sampling error. The
chance to incorrectly declare an effect because of random error in the sample
is called type I error. Standard scientific practice, which is entirely arbitrary,
commonly establishes a cutoff point to distinguish statistical significance from
non-significance at 0.05. By definition, this means that one test in 20 will
appear to be significant when it is really coincidental. When more than one
test is used, the chance of finding at least one test statistically significant due
to chance and incorrectly declaring a difference increases. When 10 statisti-
cally independent tests are performed, the chance of at least one test being
significant is no longer 0.05, but 0.40. To accommodate for this, the p-value
of each individual test is adjusted upward to ensure that the overall risk or
family-wise error rate for all tests remains 0.05. Thus, even if more than one
test is done, the risk of finding a difference incorrectly significant continues
to be 0.05, or one in twenty.

Now the problem with this logic is that a researcher performs many different tests in his
life. Similarly, there will be a lot of tests reported in a journal. Feise (2002) remarks
that, following the logic from above, a researcher should adjust his p-values in the course
of his lifetime. Similarly, should a journal adjust p-values for each issue? For each year?
Or for another period? These questions are hard to answer as it turns out. Additionally,
decreasing the chance for type I errors will increase the chance of type II errors. That’s
something we don’t want!

The conclusion from this discussion is the following recommendation: If you have
several hypotheses in mind that you want to test and if you came up with these hypotheses
before you conducted your study you should simply not care about p-value adjustment.
If you are fishing for effects, however you actually should care about alpha-inflation.
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When you fish for effects, you first test all the conditions (or: constructions) at once by
conducting a one-way repeated measures ANOVA. If this test reveals a significant result
you can adjust your p-values by using the Benjamini-Hochberg procedure (or alternatively
you do a Bonferroni correction).

18. Reporting your results

There is a very simple method to report what you did called IMRAD which is the ab-
breviation for ‘Introduction, Methods, Results, and Discussion’. The IMRAD format is
a very common structure of papers reporting empirical work. I will briefly describe how
it looks but it makes sense to read some articles to familiarize yourself with this format.

In the introduction you explain what the question of your study was and what mo-
tivated it. Additionally you state your hypothesis or your hypotheses in case you have
several.

In the methods section you describe the methods you used. Often times the methods
section has subsections labeled ‘Materials’, ‘Procedure’, and ‘Participants’. Here you
describe what materials you used, i. e., the sentences and fillers, the software you used,
and what the Likert items looked like and how many lists you created with the Latin
square prodecure, what your instructions for the participants looked like etc. You also
report who the participants were. For example, you can write: “48 native speakers of
German with a mean age of 23.05 (SD = 1.03) participated in the study. 23 of them were
female. None of them reported any language impairments. Each participant was paid 5
Euros for participation.”

In the results section you present your results. This section is not about interpretation,
but here you only report your numbers. For example, you can write: “The mean rating
of construction A was 6.025 (SD = 0.3988), the mean rating of Construction B was 1.925
(SD = 0.3545). A two-tailed paired t-test comparing the ratings of the two constructions
revealed a statistically significant p-value of 0.000000002806; t(9) = 22.8405”. Depending
on your philosophy you can also abbreviate the numbers and write “… the results were
statistically significant with p < of 0.001; t(9) = 22.84”. The numbers following the
p-value is the t-statistics including the degrees of freedom. You may have wondered
what the “t” in t-test stands for. It simply means “test”. It compares your results to
a specific probability distribution called t-distribution. The general format is “t(degrees
of freedom)= t-value”. You find the degrees of freedom (often abbreviated “df” and the
t-value in the output of R or JASP.

Finally, in the discussion section you discuss what your numbers mean. Here, your
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interpretation comes into play. The question you now want to answer is: Do the numbers
and your statistics support your hypothesis or not?

19. More on visualizing the results: box plots and beyond

We have already learned that the data gained from Likert items are, in a strict mathe-
matical sense, ordinal data. This means, for example, that it is possible to calculate a
median, but not a mean from this kind of data. However, conceptually, it has been shown
that it does no harm to treat the data as being interval as discussed above. Nevertheless,
there is a method to visualize ordinal data which I will discuss here in some detail as
it represents a good way of visually presenting your results, namely box plots and its
relatives.

You can easily create box plots with R, for example, with the ggplot2 package we
have already used in Section 16.2. You can also create box plots with Microsoft Excel,
with OpenOffice, or with JASP, however, there are some limitations. But even if you
are not familiar with R, it is easily possible to create professional box plots based on R
with the great online tool BoxPlotR (Spitzer et al. 2014). You’ll find it by browsing
to http://shiny.chemgrid.org/boxplotr/. On the website you can simply
paste in your data and view and download your box plots (in the .pdf, .eps, or .svg
format).

Let’s look at box plots and its relatives by using the data from example 3 above. For
matters of simplicity, I use the means of the construction. In real life, however, you would
use all the original ratings participants gave. I simply copied the data from a table and
pasted it into the website. This is how the result looks:

http://shiny.chemgrid.org/boxplotr/


84 Acceptability Ratings and Grammaticality Judgments

Figure 32: A simple box plot created with BoxPlotR.

Remember that the mean of construction A in example 3 was 4.575 and the mean of
construction B was 4. Box plots, however, do not use means, but rather the median.
Remember that the median is the middle value of a distribution, i. e., above the median
there are 50% of the data and below the median there are, of course, the other 50% of
the values. It thus cuts the data in half. The median is represented by the bold horizontal
lines in Figure 32 (the median of construction A is 4.38 and the median of construction
B is 4). If you are not used to box plots you have to concentrate a little: Around the
median, there is a box. The upper limit of the box is called the upper quartile. Above
the upper quartile, there are 25% of the data, below this line, there are 75% of the data.
The lower limit of the box is called the lower quartile. Below the lower quartile there
are 25% of the data, above the lower quartile there are 75% of the values. From this, it
follows, that the bold line in the middle (representing the median) does not only divide
the data in a way that 50% of the values lie above and and 50% lie below it but this also
means that 50% of the values lie inside of the box. This part is called the interquartile
range, or IQR, for short. Stare at Figure 33 for a few seconds to understand this (while
ignoring the parts I have not talked about so far).
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Figure 33: The basic make-up of a boxplot.

A box plot is a great way to visualize the spread of data. The smaller the box, the closer
the values spread around the median. Additionally, the box has whiskers (the antennae
around the box). As with error bars, there are different definitions of the whiskers, so you
have to describe what the whiskers show in the caption. One definition is that the whiskers
show the maximal values. This kind of whiskers is called “Spear type whiskers”. However,
this is not so common. This is also not the definition used in the examples above. You
can tell this from the fact that both examples include outliers which are extreme values
that are not captured by the rest of the graphic. Outliers are extreme and rare values.
Instead, the whiskers often extend up to 1.5 times the interquartile range away from
lower and upper quartile. This kind of whiskers is called “Tukey style whiskers”. Finally,
for data sets that are greater than 40 (i. e., n > 40), whiskers sometimes spread from the
5th to the 95th percentile. This kind of whiskers is called “Altman style whiskers”. Only
with Tukey style and Altman style are there outliers. Outliers are simply values that lie
outside of the whisker extent. Take a look at Figure 34 and read the definitions again to
understand what is going on. With BoxPlotR you can easily change the definition of the
whisker extends.
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Figure 34: The three basic definitions of whisker extends.

The cool thing with BoxPlotR is that you can just click on an option and see the results
immediately. In Figure 35 you see my favorite way of using box plots. There are three
changes as opposed to a regular box plot. First, there is a black cross in each box.
The crosses represent the means. The gray boxes around the crosses represent the 95%-
confidence intervals of the means. Additionally, there are notches in the box plots. The
notches also represent 95%-confidence intervals, however, not the confidence intervals of
the means, but the confidence intervals of the medians. When the notches do not overlap,
there is a very great chance that there actually is a difference between your groups.

Figure 35: The black crosses show the means, the gray boxes around the means represent
the 95%-confidence interval of the means. The notches represent the 95%-confidence
interval of the medians.
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I will briefly show you two other ways of representing your data which are similar to
box plots. Their strength is that they visually represent the spread of your data in an
very intuitive way. They are a good choice if there are two groups of people who react
differently to a construction. For example, if there are people who like your construction
and give it a good rating and people who do not like your construction, you can use violin
plots or bean plots. To illustrate the advantages of violin and bean plots, I invented some
ratings for a construction C. Some people liked the construction, others disliked it. The
(mean) ratings participants gave are: 2, 2, 3, 2, 1, 7, 6, 7, 7, 7. Now take a look at
Figure 36. As you can see, a box plot shows you that the data is spread out more, but
the internal distribution is hidden inside the box. Violin plots show you a little bit more,
but the bean plot directly tells you that there are two groups differing in their rating
behavior.

Figure 36: Regular box plot, violin plot, and bean plot.

By the way, the bold black line inside the violin plot is the interquartile range and the
white dot indicates the median. The median in the bean plot is indicated by the black
horizontal line. If you want to learn more about visualizing your results using box plots
I recommend reading Wickham & Stryjewski (2011) and Krzywinski & Alman (2014).
The latter paper is, by the way, part of a cool series called “Points of Significance” which
gives short introductory overviews of important statistical concepts. I really recommend
reading the whole series!

That’s it!

References

Anderson, F. S., Kelly, K. & Maxwell, S. E. (2017). Sample-size planning for more
accurate statistical power: A method adjusting sample effect sizes for publication
bias and uncertainty. Psychological Science, 1–16.

Bard, E. G., Robertson, D. & Sorace, A. (1996). Magnitude estimation of linguistic



88 Acceptability Ratings and Grammaticality Judgments

acceptability. Language, 72, 32–68.
Birkel, P. & Birkel, C. (2002): Wie einig sind sich Lehrer bei der Aufsatzbeurteilung? Eine

Replikationsstudie zur Untersuchung von Rudolf Weiss. Psychologie in Erziehung und
Unterricht, 49, 219–224.

Bolinger, D. L. (1968). Judgments of grammaticality. Lingua, 21, 34–40.
Boneau, C. A. (1960). The effects of violations of assumptions underlying the t test.

Psychological Bulletin, 57(1), 49–64.
Buckingham, A. & Saunders, P. (2008). The Survey Methods Workbook. Malden: Polity.
Carden, G. (1976). Syntactic and semantic data. Replication results. Language in

Society, 5(1), 99–104.
Carifio, J. & Perla, R. J. (2007). Ten common misunderstandings, misconceptions, per-

sistens myths and urban legends about Likert scales, Likert response format and their
antidotes. Journal of Social Sciences, 3(3), 106–116.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge: MIT Press.
Christensen, L. (2012). Types of Designs Using Random Assignment. In: Cooper, H.

(ed.): APA handbook of research methods in psychology. Washington, D.C.: APA
Press. 469–488.

Cohen, J. (1962). The statistical power of abnormal social psychological ressearch: A
review. Journal of Abnormal and Social Psychology, 65, 145–153.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd edition.
Hillsdale: Erlbaum.

Colerus, E. (2013). Mathematics for Everyman. From Simple Numbers to the Calculus.
Mineola, New York: Dover. Originally published as: Colerus, E. (1942): Vom Ein-
maleins zum Integral. Mathematik für jedermann. Vienna: Bischoff. Note: This is
a popular science book, but it is a classic in the German speaking world. If you are
interested in mathematics, this is an easy to read choice.

Cowart, W. (1997). Experimental Syntax. Applying Objective Methods to Sentence
Judgments. Thousand Oaks, London & New Delhi: Sage.

Cumming, G. (2012). Understanding The New Statistics. Effect Sizes, Confidence Inter-
vals, and Meta-Analysis. New York & London: Routledge.

Cumming, G. (2013). The new statistics. Why and how. Psychological Science, 25(1),
7–29.

Cumming, G., & Finch, S. (2005). Inference by eye. Confidence intervals and how to
read pictures of data. American Psychologist, 60(2), 170–180.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychome-
trica, 16, 93–96.

de Winter, J. C. F. & Dodou, D. (2010). Five-Point Likert Items: t test versus Mann-
Whitney-Wilcoxon. Practical Assessment, Research and Evaluation, 15(11), 1–16.

Endresen, A. & Janda, L. A. (2017). Five statistical models for Likert-type experimen-



Acceptability Ratings and Grammaticality Judgments 89

tal data on acceptability judgments. Journal of Research Design and Statistics in
Linguistics and Communication Science, 3(2), 217–250.

Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. (2007). G*Power 3: A flexible
statistical power analysis program for the social, behavioral, and biomedical sciences.
Behavior Research Methods, 39, 175–191.

Featherston, S. (2007). Data in generative grammar. The stick and the carrot. Theoret-
ical Linguistics, 33, 269–318.

Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC
Medical Research Methodology, 2(1), 8.

Finstad, K. (2010). Response Interpolation and Scale Sensitivity: Evidence Against
5-Point Scales. Journal of Usability Studies, 5(3), 104–110.

Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver &
Boyd.

Fisher, R. A. (1935). The design of experiments. Edinburgh: Oliver & Boyd.
Lord, F. M. (1953). On the statistical treatment of football numbers. American Psychol-

ogist, 8, 750–751.
Gibson, E. & Fedorenko, E. (2010a). Weak quantitative standards in linguistics research.

Trends in Cognitive Sciences, 14, 233–234.
Gibson, E. & Fedorenko, E. (2010b). The need for quantitative methods in syntax and

semantics research. Language and Cognitive Processes, 28(1–2), 88–124.
Gibson, E. Piantadosi, S. & Fedorenko, K. (2011). Using Mechanical Turk to obtain and

analyze English acceptability judgments. Language and Linguistics Compass, 5(8),
509–524.

Gibson, E., Piantadosi, S. T. & Fedorenko, E. (2013). Quantitative methods in syn-
tax/semantics research: A response to Sprouse and Almeida (2013). Language and
Cognitive Processes, 28(3), 229–240.

Greenbaum, S. (1973). Informant elicitation of data on syntactic variation. Lingua, 31,
201–212.

Greenbaum, S. (1976). Contextual influence on acceptability judgments. Linguistics,
187, 5–11.

Greenbaum, S. & Quirk, R. (1970). Elicitation Experiments in English. Linguistic Studies
in Use and Attitude. Coral Gables: University of Miami Press.

Heringer, J. T. (1970). Research on quantifier-negative idiolects. In: Papers From the
Sixth Regional Meeting, Chicago Linguistic Society, 287–295.

Hill, A. A. (1961). Grammaticality. Word, 17, 61–73.
JASP Team (2018). JASP (Version 0.9)[Computer software]. Online: https://

jasp-stats.org/.
Krzywinski, M. & Altman, N. (2014). Visualizing samples with box plots. Nature Meth-

ods, 11, 119–120.

https://jasp-stats.org/
https://jasp-stats.org/


90 Acceptability Ratings and Grammaticality Judgments

Labov, W. (1972). Some principles of linguistic methodology. Language in Society, 1,
97–120.

Lewis, J. R. (1993). Multipoint scales: Mean and median differences and observed signif-
icance levels. International Journal of Human-Computer Interaction, 5(4), 383–392.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology,
140, 55.

Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research.
Causes, consequences, and remedies. Psychological Methods, 9, 147–163.

McIver, J. P. & Carmines, E. G. (1983). Unidimensional scaling. Beverly Hills: Sage.
Michell, J. (1997). Quantitative science and the definition of measurement in psychology.

The British Journal of Psychology, 88, 355–383.
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics.

Advances in Health Sciences Education, 15, 625–632.
Núñez, R. (2007). Inferential Statistics in the Context of Empirical Cognitive Linguistics.

In: González-Márquez, M., Mittelberg, I., Coulson, S. & Spivey, M. (eds.): Methods
in Cognitive Linguistics. Philadelphia: John Benjamins. 87–118.

Nunnally, J. C. & Berstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.
Oppenheim, A. N. (1992). Questionnaire design, interviewing, and attitude measurement.

New York: Printer.
Pearson, E. S. (1931). The analysis of variance in the case of non-normal variation.

Biometrika, 23(1/2), 114–133.
Pell, G. (2005). Use and misuse of Likert scales. Medical Education, 39(9), 970.
Popper, K. (1959). The Logic of Scientific Discovery. London: Hutchinson.
Preston, C. C. & Colman, A. M. (2000). Optimal number of response categories in rating

scales. Reliability, validity, discriminating power, and respondent preferences. Acta
Psychologica, 104(1), 1–15.

Salsburg, D. (2001). The Lady Tasting Tea. How Statistics Revolutionized Science in
the Twentieth Century. New York: Holt.

Sedlmeier, P. & Gigerenzer, G. (1989). Do studies of statistical power have an effect on
the power of studies? Psychological Bulletin, 105, 309–316.

Schütze, C. T. (2016). The Empirical Base of Linguistics. Grammaticality Judgments
and Linguistic Methodology. Berlin: Language Science Press.

Schütze, C. D. & Sprouse, J. (2013). Judgment data. In: Podeswa, R. J. & Sharma, D.
(eds.): Research Methods in Linguistics. Cambridge: Cambridge University Press.

Spitzer, M., Wildenhain, J., Rappsilber, J. & Tyers, M. (2014). BoxPlotR: a web tool
for generation of box plots. Nature Methods, 11, 121–122.

Sprouse, J. (2011a). A test of the cognitive assumptions of magnitude estimation. Com-
mutativity does not hold for acceptability judgments. Language, 87, 274–288.

Sprouse, J. (2011b). A validation of Amazon Mechanical Turk for the collection of ac-



Acceptability Ratings and Grammaticality Judgments 91

ceptability judgments in linguistic theory. Behavior Research Methods, 43, 155–167.
Sprouse, J. & Almeida, D. (2012). Power in acceptability judgment experiments and

the reliability of data in syntax (unpublished manuscript). University of California,
Irvine & Michigan State University.

Sprouse, J. & Almeida, D. (2017). Design sensitivity and statistical power in acceptability
judgment experiments. Glossa, 2(1), 1–32.

Sprouse, J., Wagers, M. W. & Phillips, C. (2013). Deriving competing predictions from
grammatical approaches and reductionist approaches to island effects. In: Sprouse,
J. & Hornstein, N. (eds.): Experimental Syntax and Island Effects. Cambridge:
Cambridge University Press, 21–41.

Stevens, S. S. (1946): On the Theory of Measurement. Science, 103, 677–680.
Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In: Stevens, S. S.

(ed.): Handbook of experimental psychology. New York: John Wiley.
Tavakol, M. & Dennick, R. (2011). Making sense of Cronbach’s alpha. International

Journal of Medical Education, 2, 53–55.
Velleman, P. F. &Wilkinson, L. (1993): Nominal, Ordinal, Interval, and Ratio Typologies

Are Misleading. The American Statistician, 47(1), 65–72.
Weskott, T. & Fanselow, G. (2011). On the informativity of different measures of linguist

acceptability. Language, 87(2), 249-273.
Wickham, H. & Stryjewski, L. (2011). 40 years of box plots. Online: http://vita.

had.co.nz/papers/boxplots.pdf.
Zajonc, R. B. (1968). Attitudinal effects of mere exposure. Journal of Personality and

Social Psychology, 9(2, 2), 1–27.

http://vita.had.co.nz/papers/boxplots.pdf
http://vita.had.co.nz/papers/boxplots.pdf

	I Theoretical background on statistics and its relation to empirical research
	The empirical method—a short introduction
	Acceptability or grammaticality judgments? A note on terminology
	Test theory: Creating a construct
	The foundations of acceptability judgments: Measurement theory
	Measures of central tendency
	Measures of dispersion: The standard deviation
	More about populations and samples
	Confidence intervals
	Behind the scenes: parameters (and more about distributions)

	II Designing a questionnaire and conducting your study
	How to create the questionnaire: the stimuli
	Use Latin squares for counterbalancing
	The instructions
	Procedure
	Software tips

	III Analyzing and visualizing your results
	Analyzing the results
	Do your statistics in different environments: OpenOffice, R/RStudio, JASP
	Multiple comparisons
	Reporting your results
	More on visualizing the results: box plots and beyond


