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I assume that you are familiar with part I of the tutorial (see: www.fabianbross.
de/acceptabilityratings.pdf). In this second part, you will learn how to
analyze your data using mixed models (the final goal is a mixed model with random
intercepts and random slopes). Again, I will only go through some basic examples. The
exact design of the model you need to construct to analyze your data will depend on
your study. Thus, it is important that you understand the concept of mixed models
and I recommend you to read Bodo’s tutorials (Winter 2013) and to have a look at
Baayen (2012). Zuur et al. (2009) is also a good source and Mangiafico (2016) is a great
introduction for beginners. As in the first part of the tutorial, we are going to use R and
RStudio.

Linear mixed effect models are totally en vogue. They are used instead of more
classical statistical tests like t-tests and have some really cool advantages. The main
point is that they are very, very flexible. They can account for a lot of variability in
your data and can handle all sorts of different levels of measurements at the same time.
Another advantage is that your data need not be normally distributed as mixed models
are very robust against violations of normality. Finally, repeated measure designs can
be analyzed with mixed models (and as every participant rates several sentences we are
dealing with a repeated measure design).

1. A Short Note on Mixed Models and Likert Items

“Go ahead and use a LMEM on your
Likert-scale data!”

Kizach (2014)

In part I of the tutorial I talked about the fact that it is often claimed that it is not
possible to use parametric tests (for example, a t-test) with data that was obtained
through Likert items. As discussed, this may be true mathematically speaking, however,
it has been repeatedly shown that empirically this is not true: “One of the beauties of
statistical methods is that, although they often involve heroic assumptions about the
data, it seems to matter very little even when these are violated” (Norman 2010). The
same claim was made for mixed models, i. e., that they are suitable for the kind of data
you obtain from Likert items and especially using Likert items in acceptability judgment
studies; see, for example, Gibson, Piantadosi & Fedorenko (2011), Kizach (2014), and
similarly Cunnings (2012).

However, if you are more conservative you may want to fit an ordinal mixed effects
model. I will show how to do this in Section 9. Fortunately, building a linear mixed
effects model and building an ordinal mixed effects model is very similar.

www.fabianbross.de/acceptabilityratings.pdf
www.fabianbross.de/acceptabilityratings.pdf
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2. Random and Fixed Effects
Before turning to what mixed models are and how they work you need to understand the
differences between random effects and fixed effects (or fixed factors and random factors).
In an empirical study you usually measure different things. In an acceptability rating
study, for example, you may measure the acceptability of sentences, the age and gender
of participants and so on (measuring in the sense of measure theory, see part I of the
tutorial).

Let’s talk about gender first. Gender only has two values (in the statistician’s world)
or two levels, namely male and female. If you are going to ask your participants for
their gender, I assume you have a reason to do so. Perhaps you predict that gender may
have an influence on what you are interested in. Then, you are dealing with a fixed effect.

Fixed effects:

• Influence your data in a systematic way (i. e. the influence of the effect is pre-
dictable).

• Exhaust the levels of a factor (gender is a factor with two levels, there are no more
levels than these two levels).

Now let’s think about our participants. One participant may judge one sentence different
from another participant. This means that there will be variation between subjects that is
random. Additionally, you only looked at a sample of a whole population (the population
of native speakers of the language of interest). While there is a true underlying value
of your measurements, there is some random variation in the data your measured that
comes from the fact that you only chose (or sampled) a small part of the population of
interest. Participants are a random factor.
Random effects:

• Have random influences. There is an unsystematic part in them (not all participants
give exactly the same ratings on the same item).

• Do not exhaust the levels of a factor (there are more native speakers of the language
under consideration than the speakers you chose for your study).

• Have to be categorical.

If you want to make a prediction on a whole population, but the levels in your study only
represent a sample of the population, you are dealing with a random effect.

Whether a factor is random or fixed sometimes depends on your research question and
is somewhat philosophical. The following example may be a bit unrealistic and oversim-
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plified, but its sole purpose is illustration: Suppose you want to know something about
teaching methods and you study the performance of two classes. The two classes have
two different teachers and you want to take this into account. If the goal is a very broad
generalization you want to take the two teachers into account, but only because you
want to abstract away from them having different personalities. As your factor has many
different levels (there are many different teachers out there), but you only measure two,
you are dealing with a random effect. However, it could be that you want to compare the
two teachers and are only interested in the differences between the two of them, and thus
your factor has two levels. As you look at all the levels of the factor (the two teachers),
you are dealing with a fixed effect.

Remember from the first part of the tutorial that we are interested in a construction
and that it is not possible to test the construction because it is an abstract entity. We
are only able to construct sentences, i. e., concrete items that we can test. There is an
infinitely large number of sentences that can be compiled using a specific construction,
but you only test a few of them. This means that this kind of factor does not exhaust its
levels. Thus we are dealing with a random effect (cf. Clark 1973).

Note that I said that random effects have to be categorical. This means, that age, for
example, can never be a random effect as it is an interval level.

3. Understanding Intercepts and Slopes
Linear mixed models build upon linear models and linear models build upon linear func-
tions. Linear functions are very easy to understand, but you have to start the ‘line
thinking’. Let’s take a very simple example. You have two sentences. One sentence you
expect to be ill-formed and one sentence you except to be well-formed. Let’s call them
item 1 and item 2. Two participants rate the sentences from 1 (unnatural) to 7 (natural).
So you end up with four judgments. Let’s say, participant 1 rates item 1 as being a 2
and item 2 as being a 7. Participant 2 rates item 1 as being a 1 and item 2 as being a 6.
I depicted this in Figure 1.
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Figure 1: Two participants rated two items from 1 to 7.

I already started to prime you with the line thinking as I have drawn a line between the
judgments. As the figure shows, the two participants exhibit the same trend. Both rated
item 1 as being unnatural and item 2 as being natural as expected. However, participants
also differ. We can call this difference a difference in intercepts.

An ‘intercept’ is a crossing point. Suppose you have a coordinate system and a line.
The point where the line crosses the y-axis is called the y-intercept and the point where
the line crosses the x-axis is called the x-intercept. What we are concerned with here is
the starting point of our line, i. e., the point at which our line crosses item 1. If you look
at Figure 1, participant 1 has an intercept of 2 and participant 2 has an intercept of 1.
These are the points where the lines cross the first item that was rated.

Now, the intercepts are the only thing that are different in Figure 1 if we compare
the lines. There is no difference in slope. This means that the lines are parallel. The
‘slope’ of a line describes its direction and steepness. The lines in Figure 1 have exactly
the same direction and steepness.

Things, however, could have been different (and in real life they usually are). Suppose,
participant 2 thought about item 2 that it is not totally natural and rated it as being a
4. This is depicted in Figure 2. Now, we are not only dealing with different intercepts,
but also with a difference in slopes.
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Figure 2: Two participants rated two items from 1 to 7.

Now, this is where mixed models come into play. The variation we have seen, i. e., the
variation in intercepts and slopes, is a random variation. Mixed models are capable of
taking this variation into account. What we want is a model with random intercepts and
random slopes. Or to be more precise: We want a model that allows for variation. Our
model should allow, for example, the participants to differ in their intercepts and slopes.

4. Linear Functions
A linear model is basically a line. This line can be described mathematically. For de-
scribing a line, we only need two ingredients. An intercept and a slope. If we call the
intercept a and the slope b, we arrive at the following formula:

f (x) = a+bx (1)

Another way of writing this is:

y = a+bx (2)

If your line is going up, the slope is positive, if your line is going down, the slope will be
negative. You will understand what the formula does if you look at the following graphic.
Compare the intercept and slope values of the formulas with the corresponding lines.
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You will notice that the olive line with the corresponding formula f (x) = 4+ 4x starts
at 4 on the y-axis as the intercept in the formula is specified at 4. With 4, the slope is
positive, so the line goes up (specified by 4x). Starting from the beginning of the line you
can go one step to the right (on the x-axis) and you will see that the line grew about 4
steps on the y-axis. This is because the slope is 4. You can make similar observations
for the other lines. The magenta line is specified as follows: f (x) = 6+0.4x. It thus has
an intercept of 6, meaning that it starts at 6 on the y-axis and if you go one step to the
right on the x-axis (starting from its beginning), the line has gone up 0.4 steps on the
y-axis.

Start the line thinking: Suppose, we have 2 items and 10 participants rate the two
items (from 1 to 7). The ratings, we obtain are:

• Item 1: 1, 2, 2, 1, 3, 2, 1, 2, 1, 3

• Item 2: 6, 6, 5, 6, 7, 5, 6, 6, 6, 7

The mean rating for item 1 is 1.8 and for item 2 we calculate a mean of 6. We can
graphically depict this as in Figure 3. In the figure, you see the 20 ratings, and the
means depicted as bigger diamonds, and finally, a line connecting the two means. The
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important point is that the bigger the difference between the ratings, the steeper the
slope will be.

Figure 3: Ten participants rated two items.

What this example is intended to illustrate is simply that differences between groups can
be conceptualized by line thinking. In reality we cannot simply draw a line between two
means or calculate a line (or a linear function) that fits our data like this. The reason for
this is that linear models are based on an assumption called independence. This simply
means that the data points we are working with should be independent from one another.
As the same subjects rated two different items, these data points are not independent, but
clearly dependent. However, we do not have to care about this much, as we are not going
to use linear models, but linear mixed models for our analysis. And the independence
assumption does not hold for mixed models. Nevertheless, I will say a few more words
about linear models (just for a better understanding of what’s happening).

5. A Few More Words About Linear Models: Residuals
Suppose you have some toy bricks. Each toy brick has a height of 2 centimeters. You
want to build a tower. Using 0 toy bricks your tower has a height of 0 centimeters. Using
1 toy brick your tower has a height of 2 centimeters. Using 2 toy bricks your tower has
a height of 4 centimeters. You get it. You can describe what’s happening with a linear
function. This means that you can draw a line to predict what will happen if you use,
for example, 200 toy bricks. However, in the real world, things aren’t that easy.

Suppose you have some measurements that look like in Figure 4a. This could be, for
example, reaction time measures from one participant on different occasions. Perhaps,
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we played some music and the participant had to react to a stimulus. As the music gets
louder the participant slows down. To describe your data, you fit a simple linear model.
What you do is called ‘linear regression’. Remember that the formula for a linear function
looks like this:

y = a+bx (3)

Of course, there is no line that is able to connect all your data points. This is because
there is some variation in your data. Nevertheless, with a regression you can find the line
that fits your data best. So for most of the data we will need to add some variation to
our model. We simply add an error term:

y = a+bx+ ε (4)

Although we cannot find a line that connects all our observations, we can search for a
line that fits our data points best. Such a line can look like in Figure 4b. The line is
what the regression predicts to be the best fit. It represents your prediction. The dots
are your data points, your actual measurements. The distance between your observed
values (the dots) and your predicted values (the line) has its own name. This distance is
called residual. The residuals are depicted in Figure 4c.

Figure 4: Residuals.

Thus, a residual is the distance between an observed and a predicted value. Remember
that we are dealing with line fitting when doing our models. Why am I telling you this?
Each statistical method is built upon assumptions. The assumptions we are dealing with
here mainly have to do with the distribution of the residuals (and not with the distribution
of the data itself). We will talk about this later.
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6. Building a Model
Suppose 5 participants have rated 10 items. The research question was if two construc-
tions A and B differ from one another. 5 items represent construction A and 5 items
represent construction B. Your data will come from a .csv file that looks like the one in
Figure 5.

Figure 5: A simple .csv file in OpenOffice.

The structure of this file is pretty much straightforward: There is a column for par-
ticipants and each participant has a number. There is a column specifying which item
belongs to which construction and there is a column for the ratings and a column for
each item. Note that there is one rating missing. You don’t need to worry about missing
items. Simply label them “NA” in your .csv file. The mixed model can handle that.

Our goal is a model with both, fixed and random effects. That’s why it is called a
mixed model. The general formula looks like this:

y = Xβ +Zu+ ε (5)

We do not need to go into the formula. I just want to make two brief notes. The first
note is about ε . This is the error term. You do not measure deterministic systems. Thus,
there will always be some variation from a lot of different sources. That’s why there is
an error term in the formula. The second note is that this formula looks pretty much the
same as the simple formula for linear models we have already seen. The reason for this
is that both models contain an intercept and a slope.

Now we are going to analyze our data by building the model. We need to talk to R.
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Our goal is to predict the ratings based on the construction type. In other words: We
believe that the ratings of construction A will differ from the ratings of construction B.
We should thus be able to predict the ratings when looking at the construction type. In
R language, this can be written as

rating ~ construction

We can read this term as “rating predicted by construction” or “rating as a function of
construction”. Before we can start to build our model we need two things. The first thing
is the .csv file and the second thing is a package called “lme4” (Bates, Maechler & Bolker
2019). Open RStudio and import your data. You can import the data by typing in:

data = read.csv("http://www.fabianbross.de/tutorialdata.csv")

Note that I already gave the dataset a name. It’s now called ‘data’. Alternatively, you
can download the file and go to RStudio. You can import the file by clicking on “Import
Dataset” (in upper right corner). The data is completely made-up. However, it will show
you how you need to organize your data. You can take a look at the file by typing in
“data” or by just looking at the first few rows with “head(data)”. The result of the latter
command looks like this:

participant item rating construction dialect zrating
1 a1 1 7 a dialecta −1.9668302
2 a1 2 4 a dialecta −0.2809757
3 a1 3 6 a dialecta −1.4048787
4 a1 4 2 a dialecta 0.8429272
5 a1 5 2 a dialecta 0.8429272
6 a1 6 2 b dialecta 0.8429272

We can see that there is a column for the participants. I gave them names like ‘a1’, ‘a2’
and the like. It’s just names. Then there is a column for the items. Each participant rated
10 items from 1 (‘unnatural’) to 7 (‘natural’). Two constructions were tested. These are
labeled ‘a’ and ‘b’. Finally, the language under investigation has three dialects (and no
more). I called them ‘dialecta’, ‘dialectb’, and ‘dialectc’. Additionally, there is a column
called ‘zrating’ containing the z-transformed values of the Likert ratings (see part one of
the tutorial). We will need this column later. Let’s explore this data set a little bit more.
Let’s ignore the fact that there are different dialects of the language for the moment. The
first thing we want to know are the mean ratings of construction A and construction B.
To get these values we need to explain to R first that we want to take a look at the column



Mixed Models 13

‘rating’ in the data set called ‘data’. To achieve this we write ‘data$rating’. Thus, the
general format of specifying a specific column in a data set is ‘datasetname$columnname’.
With ‘mean(data$rating)’ we would get the mean of all ratings. However, this is not what
we want. We want the mean values of the constructions A and B. To do this, we type:

mean(data[data$construction=="a",]$rating)
mean(data[data$construction=="b",]$rating)

The result you get with these two commands is that the mean rating of construction A
is not available (‘NA’) and that the mean rating of construction B is 4.682759. That the
mean of construction A is not available is easy to explain: The reason is that there are
some missing values in our data set. To fix this we need to tell R to ignore the missing
values. The command for this is ‘na.rm=TRUE’. Thus we now write:

mean(data[data$construction=="a",]$rating, na.rm=TRUE)
mean(data[data$construction=="b",]$rating, na.rm=TRUE)

We can get the standard deviations in a similar way:

sd(data[data$construction=="a",]$rating, na.rm=TRUE)
sd(data[data$construction=="b",]$rating, na.rm=TRUE)

So what we have now is that construction A received a mean rating of 3.167832 (SD =

1.723843) and construction B received a mean rating of 4.682759 (SD = 1.843545). When
reporting these values it is common to round the numbers, so we would say that the mean
rating of construction a was 3.17 (SD = 1.72) and the mean rating of construction B 4.68
(SD = 1.84). To get a better mental representation of the data let’s look at a box plot in
my favorite box plot format discussed in part one of the tutorial:
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Figure 6: Box plots of the ratings of construction A and construction B. The black crosses
indicate the mean ratings, the gray boxes around the crosses indicate the 95 % confidence
intervals of the means. The notches indicate the 95 % confidence intervals of the medians
(the definition of whisker extend is Tukey).

From visual inspection we expect the two constructions to be significantly different from
each other as the confidence intervals do not overlap. Now let’s look at how the dialect
speakers differ in their judgments. Figure 7 shows six box plots. The gray box plots
show the ratings of construction A and the white box plots the ratings of construction B.
The first two box plots represent the data from the speakers of dialect A, the third and
fourth box plots the ratings of the speakers of dialect B, and the last two box plots are
the ratings of the speakers of dialect C.
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Figure 7: Box plots of the ratings of construction A and construction B by dialects. The
black crosses indicate the mean ratings, the gray boxes around the crosses indicate the
95 % confidence intervals of the means. The notches indicate the 95 % confidence intervals
of the medians.

What the box plots show is that the same trend can be observed in all dialects, namely
that construction B was rated to be more natural than construction A. Nevertheless, the
dialects behave quite dissimilar.

Now we come back to our model. Again, let’s ignore the fact that there are different
dialects for a moment. Remember that we want to predict the ratings by taking into
account that different constructions were rated:

rating ~ construction

To model this we need an additional package:

install.packages("lme4")
library(lme4)

The first line installs the package (don’t forget the quotation marks) and the second line
loads the package (don’t forget not to use quotation marks here). Now, we can build a
first model:
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modelone = lmer(rating ~ construction, data=data)

This builds a model and gives it the name ‘modelone’. It is a linear mixed effect model
specified by ‘lmer’. This model wants to predict ‘rating’ on the basis of ‘construction’
using the data labeled ‘data’ (note that if your dataset would be called “datacool” this
would read “data=datacool”). This, however does not work and the result is an error:
‘No random effects terms specified in formula’. The reason for this error is that we did
not build a mixed model as we did only specify a predictor (rating) and a fixed effect
(construction), but no random effect.

We already know from our box plots comparing the dialects that the speakers ob-
viously differed in their ratings. We can confirm this by making a scatterplot for each
participant. For a better overview I have already fitted a model for each of them:

From this graphical representation we can see the random variation we want to account
for. The most noticeable difference between the participants is that they differ in slope.
However, let’s ignore that for a minute. The second thing we notice is that the participants
differ in their intercepts. For example, participant a1 in the upper left corner has an
intercept of 4 while participant a14 in the upper right corner has an intercept of 5. Let’s
account for this in our model. Thus, let’s add the missing random part to our model. To
be more precise, we tell the model that each participant may have its own intercept:
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modeltwo = lmer(rating ~ construction + (1|participant),
data=data)

What is different compared to the first model is that we added ‘(1|participant)’. The
number 1 stands for the intercept. Thus the term means that each participant is allowed
to have its own intercept. Think again about why we are doing this: It may be that
some participants may rate your items generally worse or better than other participants.
Adding random intercepts for participants accounts for this variation. Before we take a
look at the output of this model let’s think more about potential sources of variation.

Participants will surely vary in their ratings. As the levels of the participants do
not exceed the levels of the population (there are more speakers than we tested) we will
regard them as random factors. However, the same is true for our items. We constructed
only 5 example sentences per construction although there is an infinitely large number
of sentences that could be constructed using an incredibly large amount of lexical items.
Additionally, it may be that some items in general receive better ratings than others and
some items may be judged to be worse. Thus, there is variation concerning the intercepts
of the items and we want to account for this variation too. So let’s add our items into
the random effect part of our model:

modelthree = lmer(rating ~ construction + (1|participant) +
(1|item), data=data)

Again, the term ‘(1|item)’ tells the model that the items are allowed to vary in their
intercepts. Note that you may receive a warning message if you compile the code above:
‘singular fit’. Pretty much simplified this means that the variance of one effect (or a linear
combination of variances of effects) is zero or close to zero.1 As this is only an example
we can ignore the warning here.

Now, lets look at the output. If you type:

summary(modelthree)

you will get:

Linear mixed model fit by REML ['lmerMod']
Formula: rating ~ construction + (1 | participant) + (1 | item)

Data: data

1When a model is singular this also means that the standard deviations of the estimates cannot be
derived.
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REML criterion at convergence: 1116.7

Scaled residuals:
Min 1Q Median 3Q Max

−2.48719 −0.59148 −0.09075 0.54508 2.80007

Random effects:
Groups Name Variance Std.Dev.
participant (Intercept) 0.7606 0.8721
item (Intercept) 0.0000 0.0000
Residual 2.4446 1.5635
Number of obs: 288, groups: participant, 29; item, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.1729 0.2082 15.241
constructionb 1.5099 0.1843 8.192

Correlation of Fixed Effects:
(Intr)

constructnb −0.446
convergence code: 0
singular fit

First, the summary tells you that you produced a mixed model and reminds you of your
formula. There is a lot of stuff we will ignore. The two things we are interested in are
the random effects and the fixed effects part. Let’s stick with the fixed effect part first.
There are three columns for the fixed effects: a column for the estimate, a column for
the standard error and a column for the t-value. The estimate for the intercept is 3.1729.
This is simply the mean of construction A (or approximately the mean). The mixed
model displays the intercept of the fixed effect that comes first in the alphabet. As our
constructions were labeled ‘a’ and ‘b’ in the data set we see the mean of construction
A here. The more complicated the model gets the harder the intercept value will be to
interpret.

Remember that the mean we calculated for construction B was 4.6828. This number
does not show up in the summary at all. However, we don’t need this information.
Remember that we are dealing with lines here. And we describe lines in terms of intercepts
and slopes. Let’s look at the next number, the estimate of what is mysteriously called
‘constructionb’: 1.5099. This is the slope. We can easily calculate it by subtracting the
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mean value of construction B from the mean value of construction A: 4.6828−3.1729 =

1.5099.
Side note: Each participant and each item is allowed to have a different intercept

(but the same slope) in our model. You can take a look at all these intercepts by typing:
‘coef(modelthree)’.

Now let’s turn to the random effects part. Here, variance and standard deviations
for participants and items are reported. Actually, there is no variance for the items
which is due to the fact that we took the items in our model into account. Similarly, the
participants do not vary much.

Before we take the dialects into account let’s look at some p-values (because I know
you want them). The most simple version: First, load the lmerTest package (Kuznetsova,
Brockhoff & Christensen 2019):

install.packages("lmerTest")
library(lmerTest)

Now, run the model again:

modelthree = lmer(rating ~ construction + (1|participant) +
(1|item), data=data)

summary(modelthree)

The only thing that has changed in the output is that we have p-values now:

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 3.1729 0.2082 43.4249 15.241 < 2e−16 ∗∗∗
constructionb 1.5099 0.1843 258.1645 8.192 1.2e−14 ∗∗∗
−−−
Signif. codes: 0 ‘’∗∗∗ 0.001 ‘’∗∗ 0.01 ‘’∗ 0.05 ‘’. 0.1 ‘’1

In short: The intercept is significantly different from 0 with p = 2e−16 and construction
B is significantly different from construction A with p = 1.2e−14. We could report:



20 Mixed Models

Construction A received a mean rating of 3.17 (SD = 1.72) and construction B a mean
rating of 4.68 (SD = 1.84). See Figure XY (error bars indicate 95 % confidence intervals).
A mixed-effects model was constructed in R (R Core Team 2015) using the lme4 package
(Bates, Maechler & Bolker 2019) and lmerTest (Kuznetsova, Brockhoff & Christensen
2019) to obtain p-values. The model contained construction type as a fixed effect (i. e.,
construction A versus construction B). Random intercepts for participants and items were
added. We predicted participant’s ratings as a function of construction type. The full
model translates to: lmer(rating ~ construction + (1|participant) + (1|item), data=data).
Construction B was rated more acceptable compared to construction B (fixed effect in-
tercept estimate: β0 = 3.1729 (SE = 0.2082); fixed effect slope estimate β1 = 1.5099 (SE
= 0.1843); p < 0.001).

Note that there is no standardized way of reporting mixed models (yet). You should
describe your model as precisely as possible (what were the fixed effects and what were
the random effects and what did they look like) so that others can replicate it. I’ll give
you more tips on reporting later. A great tip is to look at what happens graphically by
exploring:

modelfoura <−step(modelthree)
plot(modelfoura)

Note that the error bars in the plot indicate 95 %-confidence intervals.

7. Taking the Dialects into Account
Now, let’s account for the fact that the language has three dialects. We’ll add the
dialects as a fixed effect as the levels we looked at exceed the levels of dialects (as I said,
the language only has three dialects). This is pretty straightforward:

modelfour = lmer(rating ~ construction + dialect +
(1|participant) + (1|item), data=data)

summary(modelfour)

The result looks like this:

Linear mixed model fit by REML. t−tests use Satterthwaite's
method [lmerModLmerTest

]
Formula: rating ~ construction + dialect + (1 | participant) +

(1 | item)
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Data: data

REML criterion at convergence: 1084.6

Scaled residuals:
Min 1Q Median 3Q Max

−2.51995 −0.65785 −0.03098 0.58802 3.13754

Random effects:
Groups Name Variance Std.Dev.
participant (Intercept) 0.07392 0.2719
item (Intercept) 0.00000 0.0000
Residual 2.44411 1.5634
Number of obs: 288, groups: participant, 29; item, 10

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 3.4241 0.2029 42.7915 16.872 < 2e−16 ∗∗∗
constructionb 1.5107 0.1843 258.4005 8.198 1.15e−14 ∗∗∗
dialectdialectb 0.5605 0.2533 26.2675 2.213 0.0358 ∗
dialectdialectc −1.4351 0.2602 26.2469 −5.515 8.42e−06 ∗∗∗
−−−
Signif. codes: 0 ‘’∗∗∗ 0.001 ‘’∗∗ 0.01 ‘’∗ 0.05 ‘’. 0.1 ‘’1

Correlation of Fixed Effects:
(Intr) cnstrc dlctdlctb

constructnb −0.463
dialctdlctb −0.633 0.008
dialctdlctc −0.616 0.007 0.491
convergence code: 0
singular fit

We want two things now: We want to know if our model (modelfour) which predicted
ratings on the basis of construction type and dialects accounts for the variance in the
observed ratings better than the model taking only the construction type into account.
The second thing you want is the information you need to report your results. We can
easily get both at the same time by using the psycho package (Makowski 2019).

install.packages("psycho")
library(psycho)
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outputmodelthree <− analyze(modelthree)
print(outputmodelthree)

outputmodelfour <− analyze(modelfour)
print(outputmodelfour)

The output is amazing! You get all the information you need:

The overall model predicting rating (formula = rating ~
construction + (1 | participant) + (1 | item)) has an total
explanatory power (conditional R2) of 35.28%, in which the
fixed effects explain 15.14% of the variance (marginal R2).
The model's intercept is at 3.17 (SE = 0.21, 95% CI [2.76,
3.58]). Within this model:
− The effect of constructionb is significant (beta = 1.51, SE

= 0.18, 95% CI [1.14, 1.88], t(258) = 8.19, p < .001) and
can be considered as medium (std. beta = 0.78, std. SE =
0.095).

And:

The overall model predicting rating (formula = rating ~
construction + dialect + (1 | participant) + (1 | item)) has
an total explanatory power (conditional R2) of 35.41%, in
which the fixed effects explain 33.45% of the variance
(marginal R2). The models intercept is at 3.42 (SE = 0.20,
95% CI [3.04, 3.81]). Within this model:
− The effect of constructionb is significant (beta = 1.51, SE

= 0.18, 95% CI [1.15, 1.87], t(258) = 8.20, p < .001) and
can be considered as medium (std. beta = 0.78, std. SE =
0.095).

− The effect of dialectdialectb is significant (beta = 0.56,
SE = 0.25, 95% CI [0.075, 1.05], t(26) = 2.21, p < .05)
and can be considered as small (std. beta = 0.29, std. SE
= 0.13).

− The effect of dialectdialectc is significant (beta = −1.44,
SE = 0.26, 95% CI [−1.93, −0.94], t(26) = −5.51, p < .001)
and can be considered as medium (std. beta = −0.74, std.
SE = 0.13).

We not only see that the model taking the dialect into consideration explains more of the
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variation but we also get a lot of other useful information! Another great tip for publishing
your data is the package sjPlot (Lüdecke 2018) which can produce great tables:

install.packages("sjPlot")
library(sjPlot)
tab_model(modelthree, modelfour)

This produces a table (unfortunately no LaTeX support):

There are only two main topics left I want to talk about in this tutorial. The first thing
is that we still haven’t implemented random slopes into our model and the second thing
is that we can also build an ordinal model. In the following we will fit a model with
random intercepts and random slopes with the ordinal package. For this we are going
to use the clmm function instead of the lmer function. Fortunately, both have the same
syntax. Before doing this I will make a short side note on the assumptions underlying
linear mixed models and why you may want to fit an ordinal model.

8. Side Note: Assumptions
There are several assumptions underlying mixed models. I already noted that indepen-
dence is not an assumption so we are safe with our repeated-measure design. I will not
go into much details here, but refer to Winter (2013) on what the assumptions are and
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how to test them. I will only make one brief remark on the linearity assumption and on
homoscedasticity.

The residuals of your model should be linearly distributed (linearity assumption)
and the variance of the residuals should be equally distributed (so the variance should
not, for example, get greater with larger x-values) (homoscedasticity assumption). Both
assumption can be assessed by visual inspection. You can test this yourself:

plot(model)

What you should not see is some kind of pattern (e. g., a curve), but more or less ran-
domness (a blob or a cloud). For our made-up data, the plot does not look so bad, but
there seems to be an emerging patter, namely stripes:

However, there should be no pattern and no strings nor stripes. The following plot comes
from a subset of some actual rating data. Here we can clearly see the stripes. Each stripe
indicates one of the seven scales from the Likert items.
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This result indicates that an ordinal regression model is a more suited tool for the analysis,
although I would not be too concerned with violating the two assumptions mentioned. If
you want to be more conservative you can use an ordinal model.

9. Building an Ordinal Model
The last thing we want to do is to add random slopes. Remember that we want to account
for the fact the participants not only differ in their intercepts but also in their slopes.
The same is true for the items. Actually, adding random slopes for subjects and items is
no big deal (and this works the same with lmer and clmm).2 First, we load the ordinal
package (Christensen 2018):

install.packages("ordinal")
library(ordinal)

Then, we fit our model with random slopes and random intercepts:

modelfive = clmm(rating ~ construction + dialect + (1 +
construction|participant) + (1 + construction|item),
data=data)

This, however, will result in an error message: ‘Error in getY(fullmf) : response needs to
be a factor’. As we are trying to fit an ordinal model, the model expects the response, in

2By the way, clmm stands for ‘cumulative link mixed model’
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our case ‘rating’, to be ordinal. To convert the responses into the ordinal level, we have
to tell R that we want the responses to be ordered factors (i. e., ordinal):

data$rating <− factor(data$rating, ordered=TRUE)

Now, we can type again (this takes a bit):

modelfive = clmm(rating ~ construction + dialect + (1 +
construction|participant) + (1 + construction|item),
data=data)

The random factors now look like “(1 + factora|factorb)”. Again 1 stands for the intercept
(that is allowed to vary) and the vertical bar indicates that participants are allowed to
differ in their ratings of the construction regarding their slope and the same is done for
the items. Wow! We created a model with random slopes and random intercepts! Now
let’s look at what “summary(model)” tells us. Fortunately, the output looks very similar
to what we have seen already:

Cumulative Link Mixed Model fitted with the Laplace
approximation

formula: rating ~ construction + dialect + (1 + construction |
participant) +
(1 + construction | item)

data: data

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 288 −469.22 968.44 1418(4257) 6.66e−04 6.9e+05

Random effects:
Groups Name Variance Std.Dev. Corr
participant (Intercept) 3.001e−01 5.478e−01

constructionb 1.397e+00 1.182e+00 −0.814
item (Intercept) 2.245e−11 4.738e−06

constructionb 4.626e−02 2.151e−01 −0.297
Number of groups: participant 29, item 10

Coefficients:
Estimate Std. Error z value Pr(>|z|)

constructionb 2.0227 0.3442 5.876 4.20e−09 ∗∗∗
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dialectdialectb 0.8213 0.3045 2.697 0.00699 ∗∗
dialectdialectc −1.8825 0.3388 −5.556 2.76e−08 ∗∗∗
−−−
Signif. codes: 0 ‘’∗∗∗ 0.001 ‘’∗∗ 0.01 ‘’∗ 0.05 ‘’. 0.1 ‘’1

Threshold coefficients:
Estimate Std. Error z value

1|2 −2.8429 0.3662 −7.762
2|3 −0.5723 0.2789 −2.052
3|4 0.6839 0.2811 2.433
4|5 1.6782 0.2980 5.632
5|6 2.1465 0.3111 6.900
6|7 3.2306 0.3479 9.285
(2 observations deleted due to missingness)

As with every statistical method, clmm does make assumptions about your data. The
most important assumption is the assumption of (partial) proportional odds in our case.
The assumption of proportional odds is that the effect of the predictors (in our case
construction and dialect) are constant for each increase in the level of the response (in
our case ratings). In line-thinking terms, this assumption is also sometimes called the
assumption of equal slopes. In R we can test the proportional odds assumption with the
function ‘nominal_test()’ (and with ‘scale_test’). This function performs a likelihood
ratio test. The hypothesis under test is that relaxing the proportional odds assumption
will not improve the fit of our model. Practically, this means that we do not want
significant p-values from this test. If the proportional odds assumption fails, the results
of the model will not be reliable. Unfortunately, at the time of writing this tutorial, the
function ‘nominal_ test()’ only works for clm and not for clmm. The problem with this
is that with clm no random effect structure is allowed. So we could try fitting a model
without random effect:

modelfive.clm = clm(rating ~ construction + dialect, data=data)
nominal_test(modelfive.clm)

As you will see, this produces significant results. However, the random effect structure is
missing. Let’s hope that nominal_ test() will be available for clmm soon (this is planned
so try if it’s already available!). Nevertheless, let’s proceed and let’s apply the scale test:

scale_test(modelfive.clm)

This produces:
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Tests of scale effects

formula: rating ~ construction + dialect
Df logLik AIC LRT Pr(>Chi)

<none> −473.80 965.59
construction 1 −473.80 967.59 0.0014 0.969770
dialect 2 −466.36 954.71 14.8809 0.000587 ∗∗∗
−−−
Signif. codes: 0 ‘’∗∗∗ 0.001 ‘’∗∗ 0.01 ‘’∗ 0.05 ‘’. 0.1 ‘’1

Again, we get a statistically significant result so we have scale effects in our model.
But what are scale effects? It means that participants used the scale differently. Some
participants may, for example, avoid the extreme values of the scale (so they do not rate
items with 1 or 7). Others, in contrast, use the whole scale. One way out is to z-transform
the ratings as discussed in part one of the tutorial. The z-scored ratings are already in
our data set. The column’s name is ‘zrating’. Let’s convert it into a factor:

data$zrating <− factor(data$zrating, ordered=TRUE)

Now, let’s overwrite our clm model and test for scale effects again (this may take a while
so grab a coffee):

data$zrating <− factor(data$zrating, ordered=TRUE)
modelfive.clm = clm(zrating ~ construction + dialect, data=data)
scale_test(modelfive.clm)

Indeed, there are no scale effects anymore:

Tests of scale effects

formula: zrating ~ construction + dialect
Df logLik AIC LRT Pr(>Chi)

<none> −1363.9 3029.7
construction 1 −1363.8 3031.7 0.00611 0.9377
dialect 2 −1363.0 3032.0 1.67300 0.4332

However, the test for the proportional odds is inconclusive as it does not produce any
p-values:
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nominal_test(modelfive.clm)

Tests of nominal effects

formula: zrating ~ construction + dialect
Df logLik AIC LRT Pr(>Chi)

<none> −1363.9 3029.7
construction
dialect

As this is only an example we’ll just pretend that the proportional odds assumption is
met and proceed. Let’s fit our model again, now with the z-scored ratings::

modelfive = clmm(zrating ~ construction + dialect + (1 +
construction|participant) + (1 + construction|item),
data=data)

Now, the output tells us that it is only the construction that is significant.

Cumulative Link Mixed Model fitted with the Laplace
approximation

formula: zrating ~ construction + dialect + (1 + construction |
participant) +
(1 + construction | item)

data: data

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 288 −1357.23 3028.46 74648(223944) 1.56e+00

1.3e+05

Random effects:
Groups Name Variance Std.Dev. Corr
participant (Intercept) 0.32624 0.5712

constructionb 1.33559 1.1557 −1.000
item (Intercept) 0.00000 0.0000

constructionb 0.05974 0.2444 NaN
Number of groups: participant 29, item 10
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

constructionb −1.97257 0.37386 −5.276 1.32e−07 ∗∗∗
dialectdialectb −0.04135 0.26505 −0.156 0.876
dialectdialectc −0.03153 0.27866 −0.113 0.910
−−−
Signif. codes: 0 ‘’∗∗∗ 0.001 ‘’∗∗ 0.01 ‘’∗ 0.05 ‘’. 0.1 ‘’1

If we would deal with a linear mixed effects model we would now conduct an ANOVA.
As we are using an ordinal model we will conduct an analysis of deviance:

#Install and load required packages
install.packages("RVAideMemoire")
library(RVAideMemoire)
install.packages("car")
library(car)

Anova(modelfive, type="II")

The Anova function (with a capital A) will tell you:

Analysis of Deviance Table (Type II tests)

Response: zrating
LR Chisq Df Pr(>Chisq)

construction 38.082 1 6.782e−10 ∗∗∗
dialect 0.817 2 0.6648
−−−
Signif. codes: 0 ‘’∗∗∗ 0.001 ‘’∗∗ 0.01 ‘’∗ 0.05 ‘’. 0.1 ‘’1

Thus, the main effect of construction is significant while the main effect of dialect is not.
As we will see this is in line with further tests. We can now compare our full model (i. e.,
modelfive) with a reduced model only taking the construction type into account. Let’s
call this model ‘modelfivelight’:

modelfivelight = clmm(zrating ~ construction + (1 +
construction|participant) + (1 + construction|item),
data=data)

Using the rcompanion package we can now compare our two models:
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install.packages("rcompanion")
library(rcompanion)

nagelkerke(fit = modelfive, null = modelfivelight)

We could do the same thing with lmer, but we would not use the nagelkerke function,
but the anova function (see Winter 2013). The output of this operation tells us, again,
that construction type makes a difference, but that dialect seems to play no role (with
p = 0.66476):

Model: "clmm, zrating ~ construction + dialect + (1 +
construction | participant) + (1 + construction | item),
data"

Null: "clmm, zrating ~ construction + (1 + construction |
participant) + (1 + construction | item), data"

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.000300769
Cox and Snell (ML) 0.002831650
Nagelkerke (Cragg and Uhler) 0.002831880

$Likelihood.ratio.test
Df.diff LogLik.diff Chisq p.value

−2 −0.40834 0.81667 0.66476

$Number.of.observations

Model: 288
Null: 288

What is more interesting in our case is the opposite. We can compare our full model with
a model that only takes the dialect into account:

modelonlydialect = clmm(rating ~ dialect + (1 +
construction|participant) + (1 + construction|item),
data=data)

nagelkerke(fit = modelonlydialect, null = modelfive)
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The output produced is something we could report:

Model: "clmm, rating ~ dialect + (1 + construction |
participant) + (1 + construction | item), data"

Null: "clmm, zrating ~ construction + dialect + (1 +
construction | participant) + (1 + construction | item),
data"

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.648485
Cox and Snell (ML) 0.997784
Nagelkerke (Cragg and Uhler) 0.997865

$Likelihood.ratio.test
Df.diff LogLik.diff Chisq p.value

143 −880.14 1760.3 2.4102e−276

The pseudo R-square is a relative measure. While the R-square tells you how well the
model explains the data, the pseudo R-square describes the fit of a model relative to
another model. Similar to the R-square, pseudo R-square take values between 0 and 1
with higher values indicating a better model fit. In this case we see that the model taking
the construction type into account explains the data very well in that it accounts for 64 %
of the variation in the data (McFadden) compared to the model not taking construction
into account. That’s it!
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